
MDEV-21978 Test Report

Test Case Sub Test Configuration Expected Output Real Output Notes

%sQ ASCII Non-Printable U+0001 -
u+0031

Print as a loop that sets the buffer
via {int} directly

Value matches output for backtick
flag.

As expected

ASCII Printable Characters
32-0x7F

Print as a loop that sets the buffer
via {int} directly

Characters are printed correctly As expected

ASCII NUL 0000 \0 set buffer[0]=0; Ends string (doesn’t actually print
anything)

As expected

ASCII > U+007F (end 0xFF) Print as a loop that sets the buffer
via {int} directly

Nothing breaks, and the
character representation for an
unknown char is output

As expected

Multiple %sQ can be specified
together

Multiple %sQ can be specified
together

As expected

Output matches behavior of old
‘`’ output for all above tests

Output matches behavior of old
‘`’ output for all above tests

As expected

%sB Test simple characters Simple characters are printed As expected

0x0 does not end the string, and
%sB should print passed it if
<precision> specifies so

Using a char array of valid chars,
set one index to 0 (end of string)

The entire array of characters
should be stored

As expected

Escapes don’t do anything Escape a ‘\0’ and make sure
everything is still printed

All values used in the input sB
should be retained as-is

As expected

\0 can start a string The whole string is still retained As expected

\0 can end a string The 0 at the end is retained As expected

Multiple %sB can be specified
together

As expected

Output matches behavior of old
‘%b’ output for all above tests

Output matches behavior of old
‘%b’ output for all above tests

As expected

%iE Test valid error code ranges Loop through i from 1 to 201, and
output the %iE

Each iteration prints the correct
error number, as well as
message description for that
error number

As expected

Test invalid error code ranges Negative values and 0 Should mention that the error As expected The message for 0 vs. negative



code number is not valid values is different. For 0 it is:

0 "Internal error/check (Not
system error)"

And for general negative
numbers it is:

-5 "Internal error < 0 (Not system
error)"

Test invalid error code ranges >
201

Display message about an
unknown error number

As expected 202 "Unknown error 202"

Test multiple %iE invocations Each invocation display its error
information correctly given the
number in the varargs.

As expected

Give the input number weird
values

Memory address Value should be treated as a
number, and the memory
address should translate to an
invalid error number that is
displayed

As expected

Character literal Value should be treated as a
number that is interpreted
according to the valid/invalid
value range behavior.

As expected

NUL (‘\0’) character Value should be treated as 0 and
result in an invalid error number
message

As expected

Output matches behavior of old
‘%M’ output for all above tests

Output matches behavior of old
‘%M’ output for all above tests

As expected

%sT A string of size less than the
truncation length should not be
truncated

Truncation length = 5 abcd -> abcd As expected

A string of size equal to the
truncation length should not be
truncated

abcde -> abcde As expected

A string of size 1 over the
truncation length should truncate
the 3 characters at and before
the index of the truncation length.

abcdef -> ab… As expected

A string of size 2 over the
truncation length should truncate

abcdefg -> ab… As expected



the 3 characters at and before
the index of the truncation length.

A string of size 3 over the
truncation length should truncate
the 3 characters at and before
the index of the truncation length.

abcdefgh -> ab… As expected

A string of size 5 over the
truncation length should truncate
the 3 characters at and before
the index of the truncation length.

abcdefghijk -> ab… As expected

Two truncated strings in the
same call should both truncate,
correctly

“abcdefghijk” and “uvwxyz” ->
“ab…” and “uv…”

As expected

A string that is longer than the
truncation length, but has a ‘\0’
before the truncation length
inside it should not truncate, but
rather end before the ‘\0’

ab\0defghijk -> ab As expected

%sT should match the old %T
behavior for all above tests

%sT should match the old %T
behavior for all above tests

As expected

%sS %sS should print a string %sS 123abcde\0fg -> 123abcde As expected

%sS should adhere to precision %.6sS 123abcde\0fg -> 123abc As expected

Multiple %sS should be ok %.3sS %sS % “abcdef” “ghi” ->
“abc ghi”

As expected


