Semi-sync Group Ack



Problem

All transactions wait on one cond var
With rpl_semi_sync_master_wait_point = AFTER_COMMIT

All concurrent transactions are signalled
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Zooming into commit_trx()
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AFTER_COMMIT Complications

Multiple binlog group commits can happen ahead of current waiting trx



Example

Master
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Binlog
0-1-*

1 2“3 41516]|718|9]10|11]|12(13|14]|15|16] ...more trx committing...

ACKs needed starting need need need need need need need need need need need need need
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Cond var for connections for Mutual Exclusion;. | Connections for GTIDs 0-1-{5...16...n} in
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Signal for each ACK
ACK Receiver
Each transaction has need_ack header: A
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Acks for each transactions 0-1-{5...16...n}

10 Thread

Replica
gtid_slave_pos: 0-1-4




Proposed Solution
At binlogging time, transactions register themselves with repl_semisync_master
in binlog order (but don’t yet wait)

..then after storage engine commit..

repl_semisync_master waits on just the oldest registered transactions (can be
individual or groups)



Proposed Solution

Many options here:

1. 1 Cond Var per Registered transactions

a. No context switching problem, most memory and overhead (more acks from slave)
b. Canbe GA

2. 1 Cond Var for a group of transactions

a. Limited context switching (only within group), slightly less memory footprint
b. Can align with binlog group commit boundary
c. Canbe GA

3. 1 Cond Var for a group of transactions + group ack
a. No context switching, least overhead
b. New feature | imagine



Option 2 Would Look Something Like...
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Option 1 would just be one cond_var per
binlog trx



Conclusion After Discussion...

1. In 10.6, do option 1: One condition variable per connection thread

a. Canreuse THD::COND_ wakeup_ready
b. MDEV-33551

2. in 11.X (new feature), implement group ack
a. MDEV-33491

Link to Zulip discussion


https://mariadb.zulipchat.com/#narrow/stream/118759-general/topic/MDEV-33491.20Semi-Sync.20Group.20Ack

