
Semi-sync Group Ack

Problem

All transactions wait on one cond var

With rpl_semi_sync_master_wait_point = AFTER_COMMIT

All concurrent transactions are signalled

Flamegraphs

rpl_semi_sync_master_wait_point = AFTER_SYNC

rpl_semi_sync_master_wait_point = AFTER_COMMIT

Zooming into commit_trx()

AFTER_SYNC time in cond_timewait

AFTER_SYNC
 100k samples

AFTER_COMMIT time in cond_timewait

AFTER_SYNC
 100k samples

AFTER_COMMIT
 5.8B samples

AFTER_COMMIT Complications

Multiple binlog group commits can happen ahead of current waiting trx

Example

Proposed Solution

At binlogging time, transactions register themselves with repl_semisync_master
in binlog order (but don’t yet wait)

..then after storage engine commit..

repl_semisync_master waits on just the oldest registered transactions (can be
individual or groups)

Proposed Solution

Many options here:

1. 1 Cond Var per Registered transactions
a. No context switching problem, most memory and overhead (more acks from slave)
b. Can be GA

2. 1 Cond Var for a group of transactions
a. Limited context switching (only within group), slightly less memory footprint
b. Can align with binlog group commit boundary
c. Can be GA

3. 1 Cond Var for a group of transactions + group ack
a. No context switching, least overhead
b. New feature I imagine

Option 2 Would Look Something Like…

Option 2

Option 1 would just be one cond_var per
binlog trx

Conclusion After Discussion…

1. In 10.6, do option 1: One condition variable per connection thread
a. Can reuse THD::COND_wakeup_ready
b. MDEV-33551

2. in 11.X (new feature), implement group ack
a. MDEV-33491

Link to Zulip discussion

https://mariadb.zulipchat.com/#narrow/stream/118759-general/topic/MDEV-33491.20Semi-Sync.20Group.20Ack

