Semi-sync Group Ack

Problem

All transactions wait on one cond var
With rpl_semi_sync_master_wait_point = AFTER_COMMIT

All concurrent transactions are signalled

Flamegraphs

int=AFTER_SYNC

_PO

t

r_wai

_sync_maste

semi

rpl_

‘e_or_error

|handler::ha i..

3
(=%
2
)
—

1 execute_comman

mysq]

do_handle one connection

do_command

Matched: 0.1%

T _sync (953,552,669 samples, 0.39%)

c_master::wait_afte:

yn

1 semi_s

Function: Rep!

int=AFTER_COMMIT

_PO

t

r_wai

ync_maste

sSeml_sS

rpl_

do_command

do handle one connection

(10,932,559,802 samples, 2.22%)

c_master::wait_after commit

Function: Repl semi_sync

Zooming into commit_trx()

AFTER_SYNC time in cond_timewait

mysql execute command

do_command.
do_handle one connection

Function: Repl semi_sync master::cond_timewait (121,806,972 samples, 0.05%)

Matched: 0.1%

AFTER _SYNC
100k samples

AFTER_COMMIT time in cond_timewait

[=)
]
I.
E -

, g AFTER_SYNC
i i ‘- 100k samples

g : & AFTER_COMMIT
R s, . =' = 5.8B samples

i
:
_I-

do_handle one_connection

AFTER_COMMIT Complications

Multiple binlog group commits can happen ahead of current waiting trx

Example

Master

Binlog Grouped Binlog Grouped Binlog Grouped Future Binlog
Commit Commit Commit Group Commits

Binlog
0-1-*

1 2“3 41516]|718|9]10|11]|12(13|14]|15|16] ...more trx committing...

ACKs needed starting need need need need need need need need need need need need need

0-1-5 ack " ack ack ack ack ack ack ack ack ack ack ack ack
Binlog Dump
Thread
Wakeup all in
Cond var for connections for Mutual Exclusion;. | Connections for GTIDs 0-1-{5...16...n} in
GTIDs 0-1-{5...16...n} but only one ”| repl_semisync_master.wait_after_commit()
thread goes on
Signal for each ACK
ACK Receiver
Each transaction has need_ack header: A
0-1-{5...16...n}

Acks for each transactions 0-1-{5...16...n}

10 Thread

Replica
gtid_slave_pos: 0-1-4

Proposed Solution
At binlogging time, transactions register themselves with repl_semisync_master
in binlog order (but don’t yet wait)

..then after storage engine commit..

repl_semisync_master waits on just the oldest registered transactions (can be
individual or groups)

Proposed Solution

Many options here:

1. 1 Cond Var per Registered transactions

a. No context switching problem, most memory and overhead (more acks from slave)
b. Canbe GA

2. 1 Cond Var for a group of transactions

a. Limited context switching (only within group), slightly less memory footprint
b. Can align with binlog group commit boundary
c. Canbe GA

3. 1 Cond Var for a group of transactions + group ack
a. No context switching, least overhead
b. New feature | imagine

Option 2 Would Look Something Like...

Option 2

Master

ACKs needed starting

Binlog ‘
o1e [N

0-1-5

Binlog Dump
Thread

Binlog Grouped
Commit

Binlog Grouped
Commit

Binlog Grouped
Commit

Future Binlog
Group Commits

9 |10]11]12

13|14|15|16

...more trx committing...

need need need need need need need nead need need need nead nJed

ack ack ack ack ack ack ack ask ack ack ack apk ack Wakeup rel€évant subsets
I l .| Connections for GTIDs 0-1-{5...8} in
Cond var for Cond var for Cond var for Cond var for | repl_semisync_master.wait_after_commit()
GTID 0-1-{5..8} |GTID 0-1-{9..12} |GTID 0-1-{13..16)} GTID 0-1-{17+}

‘r—l

Each transaction has need_ack header:
0-1-{5...16...n}

group

Alias to earliest

Signal for each

ACK Receiver

1 Connections for GTIDs 0-1-{9..12} in

repl_semisync_master.wait_after_commit()

Connections for GTIDs 0-1-{13..16} in
repl_semisync_master.wait_after_commit()

& Connections for GTIDs 0-1-{17+} in

”| repl_semisync_master.wait_after_commit()

10 Thread

Replica
gtid_slave_pos: 0-1-4

Acks for each transactions 0-1-{5...16...n}

Option 1 would just be one cond_var per
binlog trx

Conclusion After Discussion...

1. In 10.6, do option 1: One condition variable per connection thread

a. Canreuse THD::COND_ wakeup_ready
b. MDEV-33551

2. in 11.X (new feature), implement group ack
a. MDEV-33491

Link to Zulip discussion

https://mariadb.zulipchat.com/#narrow/stream/118759-general/topic/MDEV-33491.20Semi-Sync.20Group.20Ack

