
- 1 -

The MariaDB CONNECT plugin Handler

Version 1.06.0007

Olivier Bertrand: 1, venelle d’en haut, 85330 Noirmoutier en l’Ile, France

Phone: 1(33) 2.51.39.57.84 – Cell: 1(33) 6.70.06.04.16

Email: bertrandop@gmail.com

mailto:bertrandop@gmail.com

- 2 -

Table of Content
Introduction .. 5
The CONNECT MariaDB handler ... 6

New Feature of the new CONNECT Version .. 6
Loading the CONNECT handler .. 6

System Variables .. 6
Creating and dropping “CONNECT” Tables ... 8

Table options: ... 8
Column options: ... 9
Index options: ... 9

Currently supported table types .. 10
Catalog Tables .. 11

Data Types .. 11
TYPE_STRING .. 11
TYPE_INT ... 12
TYPE_SHORT ... 12
TYPE_TINY .. 12
TYPE_BIGINT... 12
TYPE_DOUBLE .. 12
TYPE_DECIM ... 12
DATE Data type ... 13
NULL handling .. 14
Unsigned numeric types ... 15
Data type conversion .. 16

Inward and Outward Tables ... 18
Outward Tables .. 18

Altering Outward tables.. 18
Inward Tables ... 18

Altering Inward tables .. 18
Relational Table Types ... 20

Most of these tables are based on files whose records represent one table row. Only the column

representation within each record can differ ... 20
Data Files .. 20

Multiple File Tables ... 20
Record Format .. 20
File Mapping .. 21
Big File tables ... 21
Compressed file Tables .. 21
Zipped file Tables ... 21

DOS and FIX Table Types ... 24
Specifying the Field Format ... 26

DBF Table Type ... 28
BIN Table Type .. 29
VEC Table Type (Vertical Partitioning) ... 31
CSV and FMT Table Types.. 32

FMT type .. 34
NoSQL Table Types ... 38

XML Table Type .. 38
Creating XML tables .. 38
Using Xpath’s with XML tables ... 41
Having Columns defined by Discovery .. 43
Write operations on XML tables .. 45
Multiple Nodes in the XML Document .. 46
Making a List of Multiple Values ... 49
Support of HTML Tables ... 49

JSON Table Type ... 52
The Jpath Specification .. 55
Handling of NULL Values ... 58
Having Columns defined by Discovery .. 58
JSON Catalogue Tables .. 6059

- 3 -

Finding the table within a JSON file .. 60
JSON File Formats ... 6261
Alternate Table Arrangement ... 62
Getting and Setting JSON Representation of a Column ... 63
CRUD Operations on JSON Tables ... 64
JSON User Defined Functions ... 6665
The “JBIN” return type... 7776
Using a file as json UDF first argument ... 7877
Converting Tables to JSON .. 8281
Converting json files ... 8382
Performance Consideration .. 83
Specifying a JSON table Encoding... 83
Retrieving JSON data from MongoDB .. 8483

INI Table Type ... 84
Column layout .. 8584
Row layout ... 8685

External Table Types ... 87
External Table Specification .. 87
ODBC Table Type: Accessing Tables from another DBMS .. 89

CONNECT ODBC Tables.. 89
Accessing specified views .. 93
CRUD Operations .. 93
Sending commands to a Data Source ... 95
Connecting to a Data Source .. 97
ODBC Catalog Information .. 99

JDBC Table Type: Accessing Tables from another DBMS ... 100
Compiling from Source Distribution .. 100
Setting the required information ... 101
CONNECT JDBC Tables ... 103
Connecting to a JDBC driver .. 104
Random Access to JDBC Tables .. 106
Other Operations with JDBC Tables .. 106
JDBC specific restrictions .. 107106
Handling the UUID Data Type ... 107106
Executing the JDBC tests ... 109108

MONGO Table Type: Accessing Collections from MongoDB.. 109
CONNECT MONGO Tables .. 110
MONGO Specific Options ... 112111
CRUD Operations .. 114
Status of MONGO Table Type ... 116115

MYSQL Table Type: Accessing MySQL/MariaDB Tables ... 116115
Charset Specification .. 117
Indexing of MYSQL Tables ... 118117
CRUD Operations .. 118
Sending commands to a MySQL Server .. 119118
Connection Engine Limitations .. 121120
CONNECT MYSQL versus FEDERATED ... 121

PROXY Table Type ... 121
Virtual Table Types .. 124123

XCOL Table Type .. 124123
Using Special Columns with XCOL... 126125
XCOL tables based on specified views .. 127126

OCCUR Table Type ... 127126
PIVOT Table Type ... 129128

Defining a Pivot table ... 133132
TBL Table Type: Table List ... 136135

Parallel Execution ... 138137
Using the TBL and MYSQL types together ... 139138

Remotely executing complex queries ... 139138
Providing a list of servers ... 140139

- 4 -

Special “Virtual” Tables ... 140139
Virtual table type “VIR” ... 141140
DIR Type .. 142141
Windows Management Instrumentation Table Type “WMI”... 144143
MAC Address Table Type “MAC” .. 146145

OEM Type: Implemented in an External LIB .. 148147
Catalog Tables .. 149148

Catalog Table result size limit .. 153152
Virtual and Special Columns ... 155154
Indexing ... 157156

Standard Indexing ... 157156
Handling index errors ... 158157
Index file mapping .. 158157

Block Indexing ... 158157
Remote Indexing .. 159158
Dynamic Indexing .. 159158
Virtual Indexing.. 160159

Partitioning and Sharding ... 161160
File Partitioning .. 161160

Outward Tables .. 162161
Table Partitioning ... 165164

Indexing with Table Partitioning .. 166165
Sharding with Table Partitioning .. 166165

Current Partition Limitations .. 169168
Using CONNECT ... 170169

Performance .. 170169
Create Table statement ... 170169
Drop Table statement ... 170169
AlterTable statement .. 170169
Update and Delete for file tables .. 171170

Importing file data into MariaDB tables ... 171170
Exporting data from MariaDB .. 172171
Condition Pushdown .. 172171
Current Status of the CONNECT Handler ... 172171

Security ... 173172
Appendix A ... 175174

Expense.json ... 175174
Appendix B .. 178177

Compiling this OEM .. 180179
Appendix C ... 182180

Compiling Json UDFs in a Separate library ... 182180
Index .. 185183

- 5 -

Introduction
CONNECT is not just a new “YASE” (Yet another Storage Engine) that provides another way to store

data with additional features. It brings a new dimension to MariaDB, already one of the best products to

deal with traditional database transactional applications, into the world of business intelligence and data

analysis, including NoSQL facilities. Indeed, BI is the set of techniques and tools for the transformation

of raw data into meaningful and useful information. And where is this data?

“It's amazing in an age where relational databases reign supreme when it comes to managing data that so

much information still exists outside RDBMS engines in the form of flat files and other such constructs.

In most enterprises, data is passed back and forth between disparate systems in a fashion and speed that

would rival the busiest expressways in the world, with much of this data existing in common, delimited

files. Target systems intercept these source files and then typically proceed to load them via ETL (extract,

transform, load) processes into databases that then utilize the information for business intelligence,

transactional functions, or other standard operations. ETL tasks and data movement jobs can consume

quite a bit of time and resources, especially if large volumes of data are present that require loading into

a database. This being the case, many DBAs welcome alternative means of accessing and managing data

that exists in file format.”

This has been written by Robin Schumacher1. What he describes is known as MED (Management of

External Data) enabling to handle data not stored in a DBMS database as it were stored tables (Federated

Database System). An ISO standard exists that describe one way to implement and use MED in SQL by

defining foreign tables for which an external FDW (Foreign Data Wrapper) has been developed in C.

This is a rather complex way to achieve this goal and MariaDB does not support the ISO SQL/MED

standard but, to cover all these needs, possibly in transactional but mostly in decision support

applications, features the new CONNECT plugin storage engine that provides an extended support of

MED and NOSQL in a much simpler and powerful way.

The main features of CONNECT are:

1. No need for additional SQL language extensions.

2. Embedded wrappers for many external data types (files, data sources, virtual).

3. NoSQL query facilities for JSON, XML, and HTML files, and using Json UDF’s.

4. NoSQL new data type MONGO accessing MongoDB collections as relational tables.

5. Read/Write access to external files of most commonly used formats.

6. Direct access to external data sources via ODBC, JDBC and MySQL or MongoDB API.

7. Only used columns are retrieved from external scan.

8. Push-down WHERE clauses when appropriate.

9. Support of special and virtual columns.

10. Parallel execution of multi-table tables.

11. Supports partitioning by sub-files or by sub-tables (enabling table sharding).

12. Support of MRR for SELECT, UPDATE and DELETE.

13. Provides remote, block, dynamic and virtual indexing.

14. Can execute complex queries on remote servers.

15. Provides an API that allows writing additional FDW in C++.

This makes MariaDB featuring one of the most advanced support of MED and NoSQL, without the need

of complex additions to the SQL syntax (foreign tables are “normal” tables using the CONNECT engine).

Giving MariaDB easy and natural access to external data enables to use all the power of its functions and

its handling of the SQL language for developing business intelligence applications.

1 Robin Schumacher, Vice President Products at DataStax and former Director of Product Management at

MySQL. He has over 13 years of database experience in DB2, MySQL, Oracle, SQL Server and other database

engines.

- 6 -

The CONNECT MariaDB handler
The present document describes the MariaDB new CONNECT plugin handler and gives many examples

of using it.

This new handler enables MariaDB to access external local or remote data (MED). This is done by

defining tables based on different data types, in particular files of various format, data extracted from

other DBMS or products (such as Excel or MongoDB) via ODBC or JDBC, or data retrieved from the

environment (for example DIR, WMI, and MAC tables)

This handler supports table partitioning, MariaDB virtual columns and permits defining “special”

columns such as ROWID, FILEID and SERVID.

Version Maturity Distributed with Remark

1.05.0003 gamma MariaDB 10.0 Soon to be replaced by 1.06

1.06.0002 GA MariaDB 10.1, 10.2 and

10.3

1.06.0003 Beta Source Contains the MONGO table type.

1.06.0004 GA MariaDB all versions Deprecated.

1.06.0005 GA MariaDB all versions MONGO enabled only for MariaDB 10.2,

10.3.

1.06.0006 GA MariaDB all versions MONGO available only in MariaDB 10.2,

10.3.

Maturity of version 1.06.0003 is specified as “beta” when compiled from source with the MONGO table

type because this is a new table type not yet thoroughly tested. However, this does not mean much

because no precise definition of maturity exists. As a matter of facts, because CONNECT handles many

table types, each type has different maturity depending on whether is old and well tested, not so much

tested or newly implemented. This will be indicated when applicable.

New Feature of the new CONNECT Version

This version introduces a new table type MONGO. It enables users to access MongoDB collections and

to regard them as relational tables. This table type and the possibility to specify some columns a JSON

objects, coupled with the use of JSON functions, makes MariaDB one of the most complete tool to handle

NOSQL information.

See the MONGO table type for a detailed description of MONGO in version 1.06.0006.

Loading the CONNECT handler
The CONNECT handler must be enabled like any other plugin, for instance using the INSTALL

SONAME command.

INSTALL SONAME 'ha_connect.[so | dll]';

To be visible the ha_connect.dll or ha_connect.so, ha_connect.so.0, ha_connect.so.0.0.0 libraries must

be placed in the standard MariaDB plugin directory, which is automatically done when using the standard

binary distribution.

System Variables

CONNECT defines twelve system variables:

Name Type C-Type Default Description

xtrace session set 0 Console trace values

type_conv session enum YES TEXT conversion to VARCHAR (no, yes, or skip)

conv_size session integer 8192 VARCHAR size when converted from TEXT

- 7 -

indx_map global Boolean OFF Enable file mapping for index files

work_size session uint 64M Size of the allocation work area

use_tempfile session enum AUTO Using temporary file for UPDATE/DELETE

exact_info session Boolean OFF Return exact values to info queries

cond_push session Boolean ON Enabling cond_push for CONNECT

json_grp_size session integer 10 Max number of rows for JSON aggregate functions

json_null session string <null> Representation of JSON null values

jvm_path global string NULL Path to JVM library

class_path global string NULL Java class path

java_wrapper session string See Java wrapper (default: wrappers/JdbcInterface)

connect_xtrace

This variable can be set to trace selected parts of the CONNECT execution. Possible values are:

Name Value Description

 0 No trace

YES 1 Basic trace

MORE 2 More tracing

INDEX 4 Index construction

MEMORY 8 Allocating and freeing memory

SUBALLOC 16 Sub-allocating in work area

QUERY 32 Constructed query send to external server

STMT 64 Currently executing statement

HANDLER 128 Creating and dropping CONNECT handlers

BLOCK 256 Creating and dropping CONNECT objects

MONGO 512 Mongo tracing

Console tracing can be set on the command line or later by names or values, for instance:

set global connect_xtrace=0; // No trace

set global connect_xtrace='YES'; // By name

set global connect_xtrace=1; // By value

set global connect_xtrace='QUERY,STMT'; // By name

set global connect_xtrace=96; // By value

set global connect_xtrace=1023; // Trace all

Set connect_xtrace to 0 (default) to stop tracing or to other values if a console tracing is desired. Note

that to test this handler, MariaDB should be executed with the --console parameter because CONNECT

prints some error and trace messages on the console2.

connect_work_size

The connect_work_size variable permits allocating a larger memory sub-allocation space when dealing

with very big tables if sub-allocation fails. Its minimum value is 4194304 and maximum value depends

on the machine physical memory size. It must be specified in numeric when modified with the SET

command. If the specified value is too big and memory allocation fails, the size of the work area remains

but the variable value is not modified and should be reset.

connect_exact_info

This variable tells whether the CONNECT engine should return and exact record number value to

information queries. It is OFF by default because this information can take a very long time for variable

record length big tables or for remote tables, especially if the remote server is not available.

2 In some Linux versions, this is re-routed into the error.log file.

- 8 -

It can be set to ON when exact values are desired, for instance when querying the repartition of rows in

a partition table.

Other variables usages will be explained later where it applies.

Creating and dropping “CONNECT” Tables
Create Table statements for “CONNECT” tables are standard MySQL create statements specifying

“engine=CONNECT”. There are several additional table, column and index options specific to

CONNECT.

Table options:

This is the list of table options that can be specified when creating or altering CONNECT tables. Some

are standard MariaDB options but most of them are specific to the CONNECT engine. Because

CONNECT implements many table types, only the most current options are used directly. Other options

must be specified in the OPTION_LIST string and are described with the table type to which they apply.

(This list is prone to be added more options in future versions of the handler)

Table Option Type Description

ENGINE String Must be specified as CONNECT.

TABLE_TYPE String The external table type: DOS, FIX, BIN, CSV, FMT, XML, JSON, INI,

DBF, VEC, ODBC, JDBC, MONGO, MYSQL, TBL, PROXY, XCOL,

OCCUR, PIVOT, ZIP, VIR, DIR, WMI, MAC and EOM. Defaults to DOS,

MYSQL, or PROXY depending on other options.

FILE_NAME String The file (path) name for all table types based on files. Can be

absolute or relative to the current data directory. If not specified,

this is an Inward table and a default value is used.

XFILE_NAME String The file (path) base name for a table index files. Can be absolute

or relative to the data directory. Defaults to the file name.

TABNAME String The target table name for ODBC, JDBC, MONGO, MYSQL, PROXY or

catalog tables or top node name for XML tables.

TABLE_LIST String The comma separated sub-table list of a TBL table.

DBNAME String The target database for ODBC, JDBC, MONGO, MYSQL,

catalog, and PROXY based tables. The database concept is

sometimes known as “Schema”.

DATA_CHARSET String The character set used in the external file or data source.

SEP_CHAR String Specifies the field separator character of a CSV or XCOL table.

Also, used to specify the Jpath separator for JSON tables.

QCHAR String Specifies the character used for quoting some fields of a CSV

table or the identifiers of an ODBC/JDBC table.

SRCDEF String The source definition of a table retrieved via ODBC, JDBC or

MySQL API or used by a PIVOT table.

COLIST String The column list of OCCUR tables or $project of MONGO tables.

FILTER String To filter an external table. Currently MONGO tables only.

MODULE String The (path) name of the DLL or shared lib implementing the access

of a non-standard (OEM) table type.

SUBTYPE String The subtype of an OEM table type.

CATFUNC String The catalog function used by a catalog table.

OPTION_LIST String Used to specify all other options not yet directly defined.

CONNECTION String Specifies the connection of ODBC, JDBC, MONGO or MYSQL tables.

MAPPED Boolean Specifies whether “file mapping” is used to handle the table file.

- 9 -

Table Option Type Description

HUGE Boolean To specify that a table file can be larger than 2GB. For a MYSQL

table, prevent the result set to be memory stored.

COMPRESS Number 1 or 2 if the data file is g-zip compressed. Defaults to 0.

ZIPPED Boolean True if the table file(s) is/are zipped in one or several zip files.

SPLIT Boolean True for a VEC table when all columns are in separate files.

READONLY Boolean True if the data file must not be modified or erased.

SEPINDEX Boolean When true, indexes are saved in separate files.

BLOCK_SIZE Number The number of rows each block of a file based table contains. For

an ODBC table this is the RowSet size option. For a JDBC table

this is the fetch size. For a VIR table this is the table size in

number of rows.

LRECL Number The file record size (often calculated by default).

AVG_ROW_LENGTH Number Can be specified to help CONNECT estimate the size of a

variable record table length.

MULTIPLE Number Used to specify multiple file tables.

HEADER Number Applies to CSV, VEC and HTML files. Its meaning depends on

the table type.

QUOTED Number The level of quoting used in CSV table files.

ENDING Number End of line length. Default to 1 for Unix/Linux and 2 for

Windows.

For additional options specified in the OPTION_LIST option string, the syntax to use is:

… option_list='opname1=opvalue1,opname2=opvalue2…'

The option name is all that is between the start of the string or the last ‘,’ character and the next ‘=’

character, and the option value is all that is between this ‘=’ character and the next ‘,’ or end of string.

For instance:

option_list='name=TABLE,coltype=HTML,attribute=border=1;cellpa

dding=5,headattr=bgcolor=yellow';

This defines four options, ‘name’, ‘coltype’, ‘attribute’, and ‘headattr’ with values ‘TABLE’, ‘HTML’,

‘border=1;cellpadding=5’, and ‘bgcolor=yellow’. The only restriction is that values cannot contain

commas, but they can contain equal signs.

Column options:

Column Option Type Description

FLAG Number An integer value whose meaning depends on the table type.

FIELD_LENGTH Number Set the internal field length for DATE columns.

MAX_DIST* Number Maximum number of distinct values in this column.

DISTRIB* Enum “scattered”, “clustered”, “sorted” (ascending)

DATE_FORMAT String The format indicating how a date is stored in a file.

FIELD_FORMAT String The column format for some table types.

SPECIAL String The name of the SPECIAL column set to this column value.

*: These options are used for block indexing.

Index options:

- 10 -

Index Option Type Description

DYNAM Boolean Set the index as “dynamic”.

MAPPED Boolean Use index file mapping.

Note 1: Number, in the above option lists, is an unsigned big integer.

Note 2: Creating a CONNECT table based on file does not erase or create the file if the file name is

specified in the CREATE TABLE statement (“outward” table). If the file does not exist, it will be populated

by subsequent INSERT or LOAD commands or by the “AS select statement” of the CREATE TABLE

command. Unlike the CSV engine, CONNECT easily permits to create tables based on already existing

files, for instance files made by other applications. However, if the file name is not specified, a file with

a name defaulting to tabname.tabtype will be created in the data directory (“inward” table).

Note 3: Dropping a CONNECT table is done with a standard DROP statement. For outward tables, this

drops only the CONNECT table definition but does not erase the corresponding data file and index files.

Use DELETE or TRUNCATE to do so. This is contrary to data and index files of inward tables that are erased

on DROP like for other MariaDB engines.

Currently supported table types
CONNECT can handle very many table formats; it is indeed one of its main features. The TABLE_TYPE

option specifies the type and format of the table. The available table types and their description are listed

in the following table:

Type Description

DOS The table is contained in one or several files. The file format can be refined by some

other options of the command or more often using a specific type as many of those

described below. Otherwise, it is a flat text file where columns are placed at a fixed

offset within each record, the last column being of variable length.

FIX Text file arranged like DOS but with fixed length records.

BIN Binary file with numeric values in platform representation, also with columns at fixed

offset within records and fixed record length.

VEC Binary file organized in vectors, in which column values are grouped consecutively,

either split in separate files or in a unique file.

DBF* File having the dBASE format.

CSV* “Comma Separated Values” file in which each variable length record contains column

values separated by a specific character (defaulting to the comma)

FMT File in which each record contains the column values in a non-standard format (the

same for each record) This format is specified in the column definition.

INI File having the format of the initialization or configuration files used by many

applications.

XML* File having the XML or HTML format.

JSON* File having the JSON format.

ZIP Table giving information about the contain of a zip file.

ODBC* Table extracted from an application accessible via ODBC or unixODBC. For example,

from another DBMS or from an Excel spreadsheet.

JDBC* Table accessed via a JDBC driver.

MONGO* Table based on a MongoDB collection accessed via the MongoDB Java Driver or the

MongoDB C Driver API3.

MYSQL* Table accessed using the MySQL API alike the FEDERATED engine.

PROXY* A table based on another table existing on the current server.

3 Using the MongoDB C Driver is available only when compiling MariaDB from source.

- 11 -

Type Description

TBL* Accessing a collection of tables as one table (like the MERGE engine does for

MyISAM tables)

VIR* Virtual table containing only special and virtual columns.

XCOL* A table based on another table existing on the current server with one of its column

containing comma separated values.

OCCUR* A table based on another table existing on the current server, several columns of the

object table containing values that can be grouped in only one column.

PIVOT* Used to “pivot” the display of an existing table or view.

DIR Virtual table that returns a file list like the Unix “ls” or DOS “dir” command.

WMI* Windows Management Instrumentation table displaying information coming from a

WMI provider. This type enables to get in tabular format all sort of information about

the machine hardware and operating system (Windows only)

MAC Virtual table returning information about the machine and network cards (Windows

only)

OEM* Table of any other formats not directly handled by CONNECT but whose access is

implemented by an external FDW written in C++ (as a DLL or Shared Library).

Catalog Tables

For all table types marked with a ‘*’, CONNECT is able to analyze the data source to retrieve the column

definition. This can be used to define a “catalog” table that display the column description of the source,

or to create a table without specifying the column definition that will be automatically constructed by

CONNECT when creating the table.

These types and how to use them is described in the next chapter.

Data Types
Many data types make no or little sense when applied to plain files. This why CONNECT supports only

a restricted set of data types. However, ODBC, JDBC or MYSQL source tables may contain data types

not supported by CONNECT. In this case, CONNECT makes an automatic conversion to a similar

supported type when it is possible.

The data types internally supported by CONNECT currently are:

Type name Description Used for

TYPE_STRING Zero ended string char, varchar, text

TYPE_INT 4 bytes integer int, mediumint, integer

TYPE_SHORT 2 bytes integer smallint

TYPE_TINY 1 byte integer tinyint, Boolean

TYPE_BIGINT 8 bytes integer bigint, longlong

TYPE_DOUBLE 8 bytes floating point double, float, real

TYPE_DECIM Numeric value decimal, numeric, number

TYPE_DATE 4 bytes integer date, datetime, time, timestamp, year

TYPE_STRING

This type corresponds to what is generally known as CHAR or VARCHAR by DB users, or as strings by

programmers. Columns containing characters have a maximum length but the character string is of fixed

or variable length depending on the file format.

The DATA_CHARSET option must be used to specify the character set used in the data source or file.

Note that, unlike MariaDB, when a multi-byte character set is used, the column size represents the

number of bytes the column value can contain, not the number of characters.

- 12 -

Starting with CONNECT version 1.6.4, the field length can be specified as 0. However, this make little

sense with tables based on file because it corresponds to a zero-length field that cannot make the

difference between a blank value or a null value. However, this can be used with an external type table

that accesses a table fully supporting character fields of zero-length.

TYPE_INT

The INTEGER type contains integer numeric 4-byte values (the int of the C language) ranging from –

2,147,483,648 to 2,147,483,647 for signed type and 0 to 4,294,967,295 for unsigned type.

TYPE_SHORT

The SHORT data type contains integer numeric 2-byte values (the short integer of the C language) ranging

from –32,768 to 32,767 for signed type and 0 to 65,535 for unsigned type.

TYPE_TINY

The TINY data type contains signed integer numeric 1-byte values (the char of the C language) ranging

from –128 to 127 for signed type and 0 to 255 for unsigned type. For some table types, TYPE_TINY is

used to represent Boolean values (0 is false, anything else is true).

TYPE_BIGINT

The BIGINT data type contains signed integer 8-byte values (the long long of the C language) ranging

from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 for signed type and from 0 to

18,446,744,073,709,551,615 for unsigned type.

Inside tables, the coding of all numeric values depends on the table type. In tables represented by text

files, the number is written in characters, while in tables represented by binary files (BIN or VEC) the

number is directly stored in the binary representation corresponding to the platform.

The length (or precision) specification corresponds to the length of the table field in which the value is

stored for text files only. It is used to set the output field length for all table types.

TYPE_DOUBLE

The DOUBLE data type corresponds to the C language double type, a floating-point double precision value

coded with 8 bytes. Like for integers, the internal coding in tables depends on the table type, characters

for text files, and platform binary representation for binary files.

The length specification corresponds to the length of the table field in which the value is stored for text

files only. The scale (was precision) is the number of decimal digits written into text files. For binary

table types (BIN and VEC) this does not apply. The length and scale specifications are used to set the

output field length and number of decimals for all types of table.

TYPE_DECIM

The DECIMAL data type corresponds to what MySQL or ODBC data sources call NUMBER, NUMERIC or

DECIMAL, a numeric value with a maximum number of digits (the precision) some of them eventually

being decimal digits (the scale). The internal coding in CONNECT is a character representation of the

number. For instance:

colname decimal(14,6)

This defines a column colname as numbers having a precision of 14 and a scale of 6. Supposing it is

populated by:

insert into xxx values(-2658.74);

The internal representation of it will be the character string “-2658.740000”. The way it is stored in a file

table depends on the table type. The length field specification corresponds to the length of the table field

in which the value is stored and is calculated by CONNECT from the precision and the scale values.

This length is precision plus 1 if scale is not 0 (for the decimal point) plus 1 if this column is not unsigned

- 13 -

(for the eventual minus sign). In fix formatted tables the number is right justified in the field of width

length, for variable formatted tables, such as CSV, the field is the representing character string.

Because this type in mainly used by CONNECT to handle numeric or decimal fields of ODBC, JDBC

and MYSQL table types, CONNECT does not provide decimal calculations or comparison by itself. This

is why decimal columns of CONNECT tables cannot be indexed.

DATE Data type

Internally, all temporal values are stored by CONNECT as a signed 4-bytes integer. The value 0

corresponds to January 01, 1970 12:00:00 am coordinated universal time (UTC). All other date/time

values are represented by the number of seconds elapsed since or before midnight (00:00:00), January 1,

1970, to that date/time value. Date/time values before midnight January 1, 1970 are represented by a

negative number of seconds.

CONNECT handles dates from December 13, 20:45:52, 1901 to January 18, 19:14:07, 2038.

Although date and time information can be represented in both CHAR and INTEGER data types, the DATE

data type has special associated properties. For each DATE value, CONNECT can store all or only some

of the following information: century, year, month, day, hour, minute, and second.

Date Format in Text Tables

Internally, date/time values are handled as a signed 4-bytes integer. But in text tables (type DOS, FIX, CSV,

FMT, and DBF) dates are most of the time stored as a formatted character string (although they also can

be stored as a numeric string representing their internal value). Because there is infinity of ways to format

a date, the format to use for decoding dates, as well as the field length in the file, must be associated to

date columns (except when they are stored as the internal numeric value).

Note that this associated format is used only to describe the way the temporal value is stored internally.

This format is used as well for output to decode the date in a SELECT statement as for input to encode the

date in INSERT or UPDATE statements. However, what is kept in this value depends on the data type used

in the column definition (all the MySQL temporal values can be specified.) When creating a table, the

format is associated to a date column using the DATE_FORMAT option in the column definition, for

instance:

create table birthday (

 Name varchar(17),

 Bday date field_length=10 date_format='MM/DD/YYYY',

 Btime time field_length=8 date_format='hh:mm tt')

engine=CONNECT table_type=CSV;

insert into birthday values('Charlie','2012-11-12','15:30:00');

select * from birthday;

The last query returns:

Name Bday Btime

Charlie 2012-11-12 15:30:00

The values of the INSERT statement must be specified using the standard MySQL syntax and these values

are displayed as any MySQL temporal values. Indeed, the column formats apply only to the way these

values are represented inside the data file. Here, the inserted record will be:

Charlie,11/12/2012,03:30 PM

Note: The FIELD_LENGTH option exists because the MySQL syntax does not allow specifying the field

length between parentheses for temporal column types. If not specified, the field length is calculated

from the date format (sometimes as a max value) or made equal to the default length value if there is no

date format. In the above example, it could have been removed as the calculated values are the ones

specified. However, if the table type would have been DOS or FIX, these values could be adjusted to fit

the actual field length within the file.

- 14 -

A CONNECT format string consists of a series of elements that represent a particular piece of

information and define its format. The elements will be recognized in the order they appear in the format

string. Date and time format elements will be replaced by the actual date and time as they appear in the

source string. They are defined by the following groups of characters:

Element Description

YY The last two digits of the year (that is, 1996 would be coded as "96").

YYYY The full year (that is, 1996 could be entered as "96" but displayed as “1996”).

MM The one or two-digit month number.

MMM The three-character month abbreviation.

MMMM The full month name.

DD The one or two-digit month day.

DDD The three-character weekday abbreviation.

DDDD The full weekday name.

hh The one or two-digit hour in 12-hour or 24-hour format.

mm The one or two-digit minute.

ss The one or two-digit second.

t The one-letter AM/PM abbreviation (that is, AM is entered as "A").

tt The two-letter AM/PM abbreviation (that is, AM is entered as "AM").

Usage Notes:

- To match the source string, you can add body text to the format string, enclosing it in single quotes or

double quotes if it would be ambiguous. Punctuation marks do not need to be quoted.

- The hour information is regarded as 12-hour format if a “t” or “tt” element follows the “hh” element in

the format or as 24-hour format otherwise.

- The "MM", "DD", "hh", "mm", "ss" elements can be specified with one or two letters (e.g. "MM" or

"M") making no difference on input, but placing a leading zero to one-digit values on output4 for two-

letter elements.

- If the format contains elements DDD or DDDD, the day of week name is skipped on input and ignored

to calculate the internal date value. On output, the correct day of week name is generated and displayed.

- Temporal values are always stored as numeric in BIN and VEC tables.

Handling dates that are out of the range of supported CONNECT dates

If you want to make a table containing, for instance, historical dates not being convertible into

CONNECT dates, make your column CHAR or VARCHAR and store the dates in the MariaDB format.

All date functions applied to these strings will convert them the MariaDB dates and will work as if they

were real dates. Of course, they must be inserted and will be displayed using the MariaDB format.

NULL handling

CONNECT handles null values for data sources able to produce some. Currently this concerns mainly

the ODBC, JDBC, MONGO, MYSQL, XML, JSON and INI table types. For INI, JSON, MONGO or

XML types, null values are returned when the key is missing in the section (INI) or when the

corresponding node does not exist in a row (XML, JSON, MONGO).

For other file tables, the issue is to define what a null value is. In a numeric column, 0 can sometimes be

a valid value but, in some other cases, it can make no sense. The same for character columns; is a blank

field a valid value or not?

4 Here input and output are used to specify respectively decoding the date to get its numeric value from

the data file and encoding a date to write it in the table file. Input is performed within Select queries;

output is performed in Update or Insert queries.

- 15 -

A special case is DATE columns with a DATE_FORMAT specified. Any value not matching the format

can be regarded as NULL.

CONNECT leaves the decision to you. When declaring a column in the CREATE TABLE statement, if it is

declared NOT NULL, blank or zero values will be considered as valid values. Otherwise they will be

considered as NULL values. In all cases, nulls are replaced on insert or update by pseudo null values, a

zero-length character string for text types or a zero value for numeric types. Once converted to pseudo

null values, they will be recognized as NULL only for columns declared as nullable.

For instance:

create table t1 (a int, b char(10)) engine=connect;

insert into t1 values (0,'zero'),(1,'one'),(2,'two'),(null,'???');

select * from t1 where a is null;

The select query replies:

a b

NULL zero

NULL ???

Indeed, the value 0 entered on the first row is regarded as NULL for a nullable column. However, if we

execute the query:

select * from t1 where a = 0;

This will return no line because a NULL is not equal to 0 in an SQL where clause.

Now let us see what happens with not null columns:

create table t1 (a int not null, b char(10) not null) engine=connect;

insert into t1 values (0,'zero'),(1,'one'),(2,'two'),(null,'???');

The insert statement produces a warning saying:

Level Code Message

Warning 1048 Column 'a' cannot be null

It is replaced by a pseudo null 0 on the fourth row. Let us see the result:

select * from t1 where a is null;

select * from t1 where a = 0;

The first query returns no rows, 0 are valid values and not NULL. The second query replies:

a b

0 zero

0 ???

It shows that the NULL inserted value was replaced by a valid 0 value.

Unsigned numeric types

They are supported by CONNECT since version 1.01.0010 for fixed numeric types (TINY, SHORT,

INTEGER and BIGINT)

- 16 -

Data type conversion

CONNECT can convert data from one type to another in many cases. These conversions are done without

warning even when this leads to truncation or loss of precision. This is true, in particular, for tables of

type ODBC, JDBC, MYSQL, and PROXY (via MySQL) because the source table may contain some

data types not supported by CONNECT. They are converted when possible to CONNECT types.

MySQL types are converted as:

MySQL Types CONNECT Type Remark

integer, medium integer TYPE_INT 4 bytes integer

small integer TYPE_SHORT 2 bytes integer

tiny integer TYPE_TINY 1 byte integer

char, varchar TYPE_STRING Same length. 0 length is now supported.

double, float, real TYPE_DOUBLE 8 bytes floating point

decimal, numeric TYPE_DECIM Length depends on precision and scale

all date related types TYPE_DATE Date format can be set accordingly

bigint, longlong TYPE_BIGINT 8 bytes integer

enum, set TYPE_STRING Numeric value not accessible

All text types TYPE_STRING

TYPE_ERROR

Depending on the connect_type_conv

System variable value. See below.

Other types TYPE_ERROR Not supported, no conversion provided.

For ENUM, the length of the column is the length of the longest value of the enumeration. For SET the

length is enough to contain all the set values concatenated with comma separator.

In the case of TEXT columns, the handling depends on the values given to the connect_type_conv and

connect_conv_size system variables. If the value of connect_type_conv is:

NO No conversion. TYPE_ERROR is returned causing a “not supported” message.

YES (Default) The column is internally converted to TYPE_STRING corresponding to a column

declared as VARCHAR(n), n being the value of connect_conv_size.

FORCE Also convert ODBC blob columns to TYPE_STRING.

SKIP No conversion. When column declaration is provided via Discovery (meaning the

CONNECT table is created without column description) this column is not generated.

Note: connect_type_conv and connect_conv_size are session variables since version 1.3.6.

Note: BLOB is currently not converted by default until a TYPE_BIN type is added to CONNECT.

However, the FORCE option can be specified for blob columns containing text and the SKIP option also

applies to ODBC BLOB columns.

When converted, ODBC SQL types are converted as:

SQL Types Connect Type Remark

SQL_CHAR, SQL_VARCHAR TYPE_STRING

SQL_LONGVARCHAR TYPE_STRING len = min(abs(len), connect_conv_size)5

SQL_NUMERIC, SQL_DECIMAL TYPE_DECIM

SQL_INTEGER TYPE_INT

SQL_SMALLINT TYPE_SHORT

SQL_TINYINT, SQL_BIT TYPE_TINY

SQL_FLOAT, SQL_REAL,

SQL_DOUBLE

TYPE_DOUBLE

5 If the column is generated by discovery (columns not specified) its length is connect_conv_size.

- 17 -

SQL Types Connect Type Remark

SQL_DATETIME TYPE_DATE len = 10.

SQL_INTERVAL TYPE_STRING len = 8 + ((scale) ? (scale+1) : 0)

SQL_TIMESTAMP TYPE_DATE len = 19 + ((scale) ? (scale +1) : 0)

SQL_BIGINT TYPE_BIGINT

SQL_GUID TYPE_STRING Len = 36.

SQL_BINARY,

SQL_VARBINARY,

SQL_LONGVARBINARY

TYPE_STRING

len = min(abs(len), connect_conv_size)6

Other types TYPE_ERROR Not supported.

JDBC types are converted as:

JDBC Types Connect Type Remark

(N)CHAR, (N)VARCHAR TYPE_STRING

LONG(N)VARCHAR TYPE_STRING len = min(abs(len), connect_conv_size)7

NUMERIC, DECIMAL,

VARBINARY

TYPE_DECIM

INTEGER TYPE_INT

SMALLINT TYPE_SHORT

TINYINT, BIT TYPE_TINY

FLOAT, REAL, DOUBLE TYPE_DOUBLE

DATE TYPE_DATE len = 10.

TIME TYPE_DATE len = 8 + ((scale) ? (scale+1) : 0)

TIMESTAMP TYPE_DATE len = 19 + ((scale) ? (scale +1) : 0)

BIGINT TYPE_BIGINT

UUID

(specific to PortgreSQL)

TYPE_STRING

TYPE_ERROR

len = 36

If connect_type_conv = NO

Other types TYPE_ERROR Not supported.

Note: The connect_type_conv SKIP option also applies to ODBC and JDBC tables.

6 Only if the value of connect_type_conv is FORCE. The column should use the binary charset.
7 If the column is generated by discovery (columns not specified) its length is connect_conv_size.

- 18 -

Inward and Outward Tables
There are two broad categories of file based CONNECT tables.

Outward Tables
Tables are “outward” when their file name is specified in the CREATE TABLE statement using the

FILE_NAME option.

Firstly, remember that CONNECT implements MED (Management of External Data). This means that

the "true" CONNECT tables – “outward tables” – are based on data that belong to files that can be

produced by other applications or data imported from another DBMS.

Therefore, their data is "precious" and should not be modified except by specific commands such as

INSERT, UPDATE, or DELETE. For other commands like for instance CREATE, DROP, or ALTER

their data is never modified or erased.

Outward tables can be created on existing files or external tables. When they are dropped, only the local

description is dropped, the file or external table is not dropped or erased.

Altering Outward tables

When an ALTER TABLE is issued, it just modifies the table definition accordingly without changing

the data. ALTER can be used safely to, for instance, modify options such as MAPPED, HUGE or

READONLY but with extreme care when modifying column definitions or order options because some

column options such as FLAG should also be modified or may become wrong.

Changing the table type with ALTER often makes no sense. But many suspicious alterations can be

acceptable if they are just meant to correct an existing wrong definition.

Translating a CONNECT table to another engine is alright but the opposite is forbidden when the target

CONNECT table is not table based or when its data file exists (because the target table data cannot be

changed and, the source table being dropped, the table data would be lost.) However, it can be done to

create a new file-based tables when its file does not exist or is void.

Creating or dropping indexes is accepted because it does not modify the table data. However, it is often

unsafe to do it with an ALTER TABLE statement that does other modifications.

Of course, all changes are acceptable for empty tables.

Note: Using outward tables requires the FILE privilege.

Inward Tables
A special type of file CONNECT tables are “inward” tables. They are file-based tables whose file name is

not specified in the CREATE TABLE statement (no FILE_NAME option).

Their file will be located in the current database directory and their name will default to tabn.typ where

tabn is the table name and typ is the table type folded to lower case. When they are created without using

a CREATE TABLE … SELECT … statement, an empty file is made at create time and they can be

populated by further inserts.

They behave like tables of other storage engines and, unlike outward CONNECT tables, are erased when

the table is dropped. Of course, they should not be read-only to be usable. Even their utility is limited,

they can be used for testing purpose or when the user has not the FILE privilege.

Altering Inward tables

One thing to know, because CONNECT builds indexes in a specific way, is that all index modifications

are done using "in-place" algorithm – meaning not using a temporary table. This is why, when indexing

is specified in an ALTER TABLE statement containing other changes that cannot be done “in-place”,

the statement cannot be executed and raises an error.

- 19 -

Converting an inward table to an outward table, using an ALTER TABLE statement specifying a new

file name and or a new table type, is restricted the same way it is when converting a table from another

engine to an outward table. However, they are no restrictions to convert another engine table to a

CONNECT inward table.

- 20 -

Relational Table Types
The main feature of CONNECT is to give MariaDB the ability to handle tables from many sources,

native files, other DBMS’s tables, or special “virtual” tables. Moreover, for all tables physically

represented by data files, CONNECT recognizes many different file formats, described below but not

limited in the future to this list, because more can be easily added to it on demand (OEM tables).

Most of these tables are based on files whose records represent one table row. Only the column

representation within each record can differ

Data Files
Most of the tables processed by CONNECT are just plain DOS or UNIX data files, logically regarded as

tables thanks to their description given when creating the table. This description comes from the CREATE

TABLE statement as explained in this document. Depending on the application, these tables can already

exist as data files, used as is by CONNECT, or can have been physically made by CONNECT as the

result of a CREATE TABLE … SELECT … and/or INSERT statement(s).

The file path/name is given by the FILE_NAME option. If it is a relative path/name, it will be relative to

the database directory, the one containing the table .FRM file.

Unless specified, the maturity of file table types is: STABLE.

Multiple File Tables

There are two types of multiple file tables. The first one is partitioned tables when each partition is stored

in a separate file. CONNECT partition tables are described later in this document.

The second one is tables specified as “multiple”. A multiple file table is one that is physically contained

in several files of the same type instead of just one. These files are processed sequentially during the

process of a query and the result is the same as if all the table files were merged into one. This is great to

process files coming from different sources (such as cash register log files) or made at different time

periods (such as bank monthly reports) regarded as one table. Note that the operations on such files are

restricted to sequential Select and Update; and that VEC multiple tables are not supported by CONNECT.

The file list depends on the setting of the multiple option of the CREATE TABLE statement for that table.

Multiple tables are specified by the option MULTIPLE= n, which can take four values:

0 Not a multiple table (the default). This can be used in an alter table statement.

1 The table is made from files located in the same directory. The FILE_NAME option is a

pattern such as 'cash*.log' that all the table file path/names verify.

2 The FILE_NAME gives the name of a file that contains de path/names of all the table files.

This file can be made using a DIR table.

3 Like multiple=1 but also including eligible files from the directory sub-folders.

The FILEID special column, described later in this document, allows query pruning by filtering the file

list or doing some grouping on the files that make a multiple table.

Note: Multiple was not implemented for XML tables. This restriction is removed since version 1.02.

Record Format

This characteristic applies to table files handled by the operating system input/output functions. It is fixed

for table types FIX, BIN, DBF and VEC, and it is variable for DOS, VCT, FMT and some JSON tables.

For fixed tables, most I/O operations are done by block of BLOCK_SIZE rows. This diminishes the

number of I/O’s and enables block indexing.

Starting with this CONNECT version, the BLOCK_SIZE option can also be specified for variable tables.

Then, a file similar to the block indexing file is created by CONNECT that gives the size in bytes of each

block of BLOCK_SIZE rows. This enables to use block I/O’s and block indexing to variable tables. It

also enables CONNECT to return the exact row number for info commands.

- 21 -

File Mapping

For file-based tables of reasonable size, processing time can be greatly enhanced under Windows™ or

some flavor of UNIX or Linux by using the technique of “file mapping”, in which a file is processed as

if it were entirely in memory. Mapping is specified when creating the table using the MAPPED=YES option.

This does not apply to tables not handled by system I/O functions (XML and INI).

Big File tables

Because all files are handled by the standard input/output functions of the operating system, their size is

limited to 2GB, the maximum size handled by standard functions. For some table types, CONNECT can

deal with files that are larger than 2GB, or prone to become larger than this limit. These are the FIX, BIN

and VEC types. To tell connect to use input/output functions dealing with big files, specify the option

huge=1 or huge=YES for that table. Note however that CONNECT cannot randomly access tables

having more than 2G records.

Compressed file Tables

CONNECT can make and processed some tables whose data file is compressed. The only supported

compression format is the gzlib format. Zip and zlib formats are supported differently. The table types

that can be compressed are DOS, FIX, BIN, CSV and FMT. This can save some disk space at the cost of

a somewhat longer processing time.

Some restrictions apply to compressed tables:

• Compressed tables are not indexable.

• Update and partial delete are not supported.

Use the numeric COMPRESS option to specify a compressed table:

0 Not compressed

1 Compressed in gzlib format.

2 Made of compressed blocks of BLOCK_SIZE records (enabling block indexing)

Zipped file Tables

Connect can work on the table file(s) that are compressed in one or several zip files.

The specific options used when creating tables based on zip files are:

Table Option Type Description

ZIPPED Boolean Required. To be set as true.

ENTRY* String The optional name or pattern of the zip entry or entries to be used

with the table. If not specified, all entries or only the first one will be

used depending on the mulentries option setting.

MULENTRIES* Boolean True if several entries are part of the table. If not specified, it defaults

to false if the entry option is not specified. If the entry option is

specified, it defaults to true is the entry name contains wildcard

characters or false if it does not.

APPEND* Boolean Used when creating new zipped tables (see below)

LOAD* String Used when creating new zipped tables (see below)

Note: Options marked with a ‘*’ must be specified in the option list.

Examples of use: Let's suppose you have a CSV file from which you would create a table by:

create table emp

... optional column definition

engine=connect table_type=CSV file_name='E:/Data/employee.csv'

sep_char=';' header=1;

- 22 -

If the CSV file is included in a ZIP file, the CREATE TABLE becomes:

create table empzip

... optional column definition

engine=connect table_type=CSV file_name='E:/Data/employee.zip'

sep_char=';' header=1 zipped=1 option_list='Entry=emp.csv';

The file_name option is the name of the zip file. The entry option is the name of the entry inside the zip

file. If there is only one entry file inside the zip file, this option can be omitted.

If the table is made from several files such as emp01.csv, emp02.csv, etc., the standard create table would

be:

create table empmul

... optional column definition

engine=connect table_type=CSV file_name='E:/Data/emp*.csv'

sep_char=';' header=1 multiple=1;

But if these files are all zipped inside a unique zip file, it becomes:

create table empzmul

... optional column definition

engine=connect table_type=CSV file_name='E:/Data/emp.zip'

sep_char=';' header=1 zipped=1 option_list='Entry=emp*.csv';

Here the entry option is the pattern that the files inside the zip file must match. If all entry files are ok,

the entry option can be omitted but the Boolean option mulentries must be specified as true.

If the table is created on several zip files, it is specified as for all other multiple tables:

create table zempmul

... optional column definition

engine=connect table_type=CSV file_name='E:/Data/emp*.zip'

sep_char=';' header=1 multiple=1 zipped=yes

option_list='Entry=employee.csv';

Here again the entry option is used to restrict the entry file(s) to be used inside the zip files and can be

omitted if all are Ok. All values of the multiple options are acceptable, for instance 3 to include also zip

files located in sub-directories.

The column descriptions can be retrieved by the discovery process for table types allowing it. For

multiple tables or multiple entries, it is supported only for CSV tables.

Catalog table can be created by adding catfunc=columns. This can be used to show the column

definitions of multiple tables. Multiple must be set to false and the column definitions will be the ones

of the first table or entry.

This first implementation has some restrictions:

1. Zipped tables are read only. UPDATE and DELETE are not supported. However, INSERT is supported

in a specific way when making tables.

2. The inside files are decompressed into memory. Memory problems may arise with huge files.

3. Only file types that can be handled from memory are eligible for this. This includes DOS, FIX,

BIN, CSV, FMT, JSON, and XML table types, as well as types based on these such as XCOL,

OCCUR and PIVOT.

Optimization by indexing or block indexing is possible for table types supporting it. However, it applies

to the uncompressed table. This means that the whole table is always uncompressed.

Partitioning is also supported. See how to do it in the chapter about partitioning.

- 23 -

Creating new zipped tables

Tables can be created to access already existing zip files. However, is it also possible to make the zip file

from an existing file or table. Two ways are available to make the zip file:

Insert method:

INSERT can be used to make the table file for table types based on records (this excludes XML and JSON

when PRETTY is not 0). However, the current implementation of the used package (minizip) does not

support adding to an already existing zip entry. This means that when executing an INSERT statement, the

inserted records would not be added but would replace the existing ones. CONNECT protects existing

data by not allowing such inserts. Therefore, only three ways are available to do so:

1) Using only one INSERT statement to make the whole table. This is possible only for small tables

and is principally useful when making tests.

2) Making the table from the data of another table. This can be done by executing an “insert

into table select * from another_table” or by specifying “as select *

from another_table” in the create table statement.

3) Making the table from a file whose format enables to use the “load data infile”

statement.

To add a new entry in an existing zip file, specify “append=YES” in the option list. When inserting

several entries, use ALTER to specify the required options, for instance:

create table znumul (

Chiffre int(3) not null,

Lettre char(16) not null)

engine=CONNECT table_type=CSV

file_name='C:/Data/FMT/mnum.zip' header=1 lrecl=20 zipped=1

option_list='Entry=Num1';

insert into znumul select * from num1;

alter table znumul option_list='Entry=Num2,Append=YES';

insert into znumul select * from num2;

alter table znumul option_list='Entry=Num3,Append=YES';

insert into znumul select * from num3;

alter table znumul option_list='Entry=Num*,Append=YES';

select * from znumul;

The last ALTER is needed to display all the entries.

File zipping method

This method enables to make the zip file from another file when creating the table. It applies to all table

types including XML and JSON. It is specified in the CREATE TABLE statement with the LOAD option.

For example:

create table XSERVZIP (

NUMERO varchar(4) not null,

LIEU varchar(15) not null,

CHEF varchar(5) not null,

FONCTION varchar(12) not null,

NOM varchar(21) not null)

engine=CONNECT table_type=XML file_name='E:/Xml/perso.zip' zipped=1

option_list='entry=services,load=E:/Xml/serv2.xml';

When executing this statement, the serv2.xml file will be zipped as perso.zip. The entry name must be

specified as well as the column descriptions that cannot be retrieved from the zip entry file that does not

exist yet.

It is also possible to create a multi-entries table from several files:

- 24 -

CREATE TABLE znewcities (

 _id char(5) NOT NULL,

 city char(16) NOT NULL,

 lat double(18,6) NOT NULL `FIELD_FORMAT`='loc:[0]',

 lng double(18,6) NOT NULL `FIELD_FORMAT`='loc:[1]',

 pop int(6) NOT NULL,

 state char(2) NOT NULL

) ENGINE=CONNECT TABLE_TYPE=JSON FILE_NAME='E:/Json/newcities.zip'

ZIPPED=1 LRECL=1000

OPTION_LIST='Load=E:/Json/city_*.json,mulentries=YES,pretty=0';

Here the files to load are specified with wildcard characters and the MULENTRIES options must be specified. However,

the ENTRY option must not be specified, entry names will be made from the file names.

ZIP Table Type

A ZIP table type is also available. It is not meant to read the inside files but to display information about

the zip file contain. For instance:

create table xzipinfo2 (

fn varchar(256)not null,

cmpsize bigint not null flag=1,

uncsize bigint not null flag=2,

method int not null flag=3,

date datetime not null flag=4)

engine=connect table_type=ZIP file_name='E:/Data/Json/cities.zip';

This will display the name, compressed size, uncompressed size, compress method, and compacting date

of all entries inside the zip file. Column names are irrelevant; this is the flag value that means what

information to retrieve.

DOS and FIX Table Types
Table of type DOS and FIX are based on text files. Within a record, column fields are positioned at a fixed

offset from the beginning of the record. Except sometimes for the last field, column fields are also of

fixed length. If the last field has varying length, the type of the table is DOS. For instance, having the file

dept.dat formatted like:

0318 KINGSTON 70012 SALES Bank/Insurance

0021 ARMONK 87777 CHQ Corporate headquarter

0319 HARRISON 40567 SALES Federal Administration

2452 POUGHKEEPSIE 31416 DEVELOPMENT Research & development

You can define a table based on it with:

create table department (

number char(4) not null,

location char(15) not null flag=5,

director char(5) not null flag=20,

function char(12) not null flag=26,

name char(22) not null flag=38)

engine=CONNECT table_type=DOS file_name='dept.dat';

Here the flag column option represents the offset of this column inside the records. If the offset of a

column is not specified, it defaults to the end of the previous column and defaults to 0 for the first one.

The lrecl parameter that represents the maximum size of a record is calculated by default as the end of

the rightmost column and can be unspecified except when some trailing information exists after the

rightmost column.

Note: A special case is files having an encoding such as UTF-8 (for instance specifying charset=UTF8)

in which some characters may be represented with several bytes. Unlike the type size that MariaDB

interprets as a number of characters, the lrecl value is the record size in bytes and the flag value represents

- 25 -

the offset of the field in the record in bytes. If the flag and/or the lrecl value are not specified, they will

be calculated by the number of character in the fields multiplied by a value that is the maximum size in

bytes of a character for the corresponding charset. For UTF-8 this value is 3 that is often far too much as

they are very few characters requiring 3 bytes to be represented. When creating a new file, you are on

the safe side by only doubling the maximum number of characters of a field to calculate the offset of the

next field. Of course, for already existing files, the offset must be specified according to what exists

within it.

Although the field representation is always text in the table file, you can freely choose the corresponding

column type, characters, date, integer or floating point per its contents.

Sometimes, as in the number column of the above department table, you have the choice of the type,

numeric or characters. This will modify how the column is internally handled -- in characters 0021 is

different from 21 but not in numeric -- as well as how it is displayed.

If the last field has fixed length, the table should be referred as having the type FIX. For instance, to create

a table on the file boys.txt:

John Boston 25/01/1986 02/06/2010

Henry Boston 07/06/1987 01/04/2008

George San Jose 10/08/1981 02/06/2010

Sam Chicago 22/11/1979 10/10/2007

James Dallas 13/05/1992 14/12/2009

Bill Boston 11/09/1986 10/02/2008

You can for instance use the command:

create table boys (

name char(12) not null,

city char(12) not null,

birth date not null date_format='DD/MM/YYYY',

hired date not null date_format='DD/MM/YYYY' flag=36)

engine=CONNECT table_type=FIX file_name='boys.txt' lrecl=48;

Here some flag options were not specified because the fields have no intermediate space between them

except for the last column. The offsets are calculated by default adding the field length to the offset of

the preceding field. However, for formatted date columns, the offset in the file depends on the format

and cannot be calculated by default. For fixed files, the lrecl option is the physical length of the record

including the line ending character(s). It is calculated by adding to the end of the last field 2 bytes under

Windows (CRLF) or 1 byte under UNIX. If the file is imported from another operating system, the

ENDING option will have to be specified with the proper value.

For this table, the last offset and the record length must be specified anyway because the date columns

have field length coming from their format that is not known by CONNECT. Do not forget to add the

line ending length to the total length of the fields.

This table is displayed as:

name city birth hired

John Boston 1986-01-25 2010-06-02

Henry Boston 1987-06-07 2008-04-01

George San Jose 1981-08-10 2010-06-02

Sam Chicago 1979-11-22 2007-10-10

James Dallas 1992-05-13 2009-12-14

Bill Boston 1986-09-11 2008-02-10

- 26 -

Whenever possible, the fixed format should be preferred to the varying one because it is much faster to

deal with fixed tables than with variable tables. Indeed, instead of being read or written record by record,

FIX tables are processed by blocks of BLOCK_SIZE records, resulting in far less input/output operations

to execute. The block size defaults to 100 if not specified in the Create Table statement. For tables of

varying format, block read/write can be also obtained by specifying the BLOCK_SIZE option.

CONNECT construct in that case a file containing the size of each block.

Note 1: It is not mandatory to declare in the table all the fields existing in the source file. However, if

some fields are ignored, the flag option of the following field and/or the lrecl option will have to be

specified.

Note 2: Some files have an EOF marker (CTRL+Z 0x1A) that can prevent the table to be recognized as

fixed because the file length is not a multiple of the fixed record size. To indicate this, use in the option

list the create option EOF. For instance, if after creating the FIX table xtab on the file foo.dat that you

know have fixed record size, you get, when you try to use it, a message such as:

File foo.dat is not fixed length, len=302587 lrecl=141

After checking that the LRECL default or specified specification is correct, you can indicate to ignore that

extra EOF character by:

alter table xtab option_list='eof=1';

Of course, you can specify this option directly in the Create statement. All this applies to some other

table types, in particular to BIN tables.

Note 3: The width of the fields is the length specified in the column declaration. For instance, for a

column declared as:

number int(3) not null,

The field width in the file is 3 bytes. This is the value used to calculate the offset of the next field if it is

not specified. If this length is not specified, it defaults to the MySQL default type length.

Specifying the Field Format

Some files have specific format for their numeric fields. For instance, the decimal point is absent and/or

the field should be filled with leading zeroes. To deal with such files, as well in reading as in writing,

their format can be specified in the CREATE TABLE column definition. The syntax of the field format

specification is:

Field_format='[Z][N|Dc][d]'

The optional parts of the format are:

Z The field has leading zeroes

N No decimal point exists in the file

D Specifies the decimal separator as the character c

d The number of decimals, defaults to the column precision

Let us see how it works in the following example. We define a table based on the file xfmt.txt having

eight fields of 12 characters:

create table xfmt (

col1 double(12,3) not null,

col2 double(12,3) not null field_format='4',

col3 double(12,2) not null field_format='N3',

col4 double(12,3) not null field_format='ZD,',

col5 double(12,3) not null field_format='Z3',

- 27 -

col6 double(12,5) not null field_format='ZN5',

col7 int(12) not null field_format='N3',

col8 smallint(12) not null field_format='N3')

engine=CONNECT table_type=FIX file_name='xfmt.txt';

insert into xfmt values(4567.056,4567.056,4567.056,4567.056,-23456.8,

3.14159,4567,4567);

select * from xfmt;

The first row is displayed as:

COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8

4567.056 4567.056 4567.06 4567.056 -23456.800 3.14159 4567 4567

The number of decimals displayed for all float columns is the column precision, the second argument of

the column type option. Of course, integer columns have no decimals, although their formats specify

some.

More interesting is the file layout. To see it let us define another table based on the same file but whose

columns are all characters:

create table cfmt (

col1 char(12) not null,

col2 char(12) not null,

col3 char(12) not null,

col4 char(12) not null,

col5 char(12) not null,

col6 char(12) not null,

col7 char(12) not null,

col8 char(12) not null)

engine=CONNECT table_type=FIX file_name='xfmt.txt';

select * from cfmt;

The (transposed) display of the select command shows the file text layout for each field. Below a third

column was added in this document to comment this result.

Column Row 1 Comment (all numeric fields are written right justified)

COL1 4567.056 No format, the value was entered as is.

COL2 4567.0560 The format ‘4’ forces to write 4 decimals.

COL3 4567060 N3 No decimal point. The last 3 digits are decimals. However,

the second decimal was rounded because of the column precision.

COL4 00004567,056 Z Leading zeroes, 3 decimals (the column precision) The decimal

separator is a comma (like in some European countries)

COL5 -0023456.800 Z3 (Minus sign) leading zeroes, 3 decimals.

COL6 000000314159 ZN5 Leading zeroes, no decimal point, 5 decimals.

COL7 4567000 N3 No decimal point. The last 3 digits are decimals.

COL8 4567000 Same. Any decimals would be ignored.

Note: For columns internally using double precision floating-point numbers, MariaDB limits the decimal

precision of any calculation to the column precision. The declared column precision should be at least

the number of decimals of the format to avoid a loss of decimals as it happened for col3 of the above

example.

- 28 -

DBF Table Type
A table of type DBF is physically a dBASE III or IV formatted file (used by many products like dBASE,

Xbase, FoxPro etc.). This format is like the FIX type format with in addition a prefix giving the

characteristics of the file and describing all the fields (columns) of the table.

Because DBF files have a header that contains Meta data about the file, in particular the column

description, it is possible to create a table based on an existing DBF file without giving the column

description, for instance:

create table cust engine=CONNECT table_type=DBF file_name='cust.dbf';

To see what CONNECT has done, you can use the DESCRIBE or SHOW CREATE TABLE commands, and

eventually modify some options with the ALTER TABLE command.

The case of deleted lines is handled in a specific way for DBF tables. Deleted lines are not removed from

the file but are “soft deleted” meaning they are marked as deleted. In particular, the number of lines

contained in the file header does not take care of soft deleted lines. Therefore, if you execute these two

commands applied to a DBF table named tabdbf:

select count(*) from tabdbf;

select count(*) from tabdbf where 1;

They can give a different result, the (fast) first one giving the number of physical lines in the file obtained

from the header and the second one giving the number of line that are not (soft) deleted.

The commands UPDATE, INSERT, and DELETE can be used with DBF tables. The DELETE command marks

the deleted lines as suppressed but keeps them in the file. The INSERT command, if it is used to populate

a newly created table, constructs the file header before inserting new lines.

Note: For DBF tables, column name length is limited to 11 characters and field length to 256 bytes.

Conversion of dBASE Data Types

CONNECT handles only types that are stored as characters.

Symbol DBF Type CONNECT Type Description

B Binary (string) TYPE_STRING 10 digits representing a .DBT block number.

C Character TYPE_STRING All OEM code page characters - padded with

blanks to the width of the field.

D Date TYPE_DATE 8 bytes - date stored as a string in the format

YYYYMMDD.

N Numeric TYPE_INT

TYPE_BIGINT

TYPE_DOUBLE

Number stored as a string, right justified, and

padded with blanks to the width of the field.

L Logical TYPE_STRING 1 byte - initialized to 0x20 otherwise T or F.

M Memo (string) TYPE_STRING 10 digits representing a .DBT block number.

@ Timestamp Not supported 8 bytes - two longs, first for date, second for time.

It is the number of days since 01/01/4713 BC.

I Long Not supported 4 bytes. Leftmost bit used to indicate sign, 0

negative.

+ Autoincrement Not supported Same as a Long

F Float TYPE_DOUBLE Number stored as a string, right justified, and

padded with blanks to the width of the field.

O Double Not supported 8 bytes - no conversions, stored as a double.

G OLE TYPE_STRING 10 digits representing a .DBT block number.

- 29 -

For the N numeric type, CONNECT converts it to TYPE_DOUBLE if the decimals value is not 0, to

TYPE_BIGINT if the length value is greater than 10, else to TYPE_INT.

For M, B, and G types, CONNECT just returns the DBT number.

Reading Soft Deleted Lines of a DBF table

It is possible to read these lines by changing the read mode of the table. This is specified by an option

READMODE that can take the values:

0: Standard mode. This is the default option.

1: Read all lines including soft deleted ones.

2: Read only the soft deleted lines.

For example, to read all lines of the tabdbf table, you can do:

alter table tabdbf option_list='Readmode=1';

To come back to normal mode, specify READMODE=0.

BIN Table Type
A table of type BIN is physically a binary file in which each row is a logical record of fixed length8.

Within a record, column fields are of a fixed offset and length as with FIX tables. Specific to BIN tables

is that numerical values are internally encoded using native platform representation, so no conversion is

needed to handle numerical values in expressions.

It is not required that the lines of a BIN file be separated by characters such as CR and/or LF but this is

possible. In such an event, the lrecl option must be specified accordingly.

Note: Unlike for the DOS and FIX types, the width of the fields is the length of their internal

representation in the file. For instance, for a column declared as:

number int(5) not null,

The field width in the file is 4 characters, the size of a binary integer. This is the value used to calculate

the offset of the next field if it is not specified. Therefore, if the next field is placed 5 characters after this

one, this declaration is not enough, and the flag option must be used on the next field.

Type Conversion in BIN Tables

Here are the correspondences between the column type and field format provided by default:

Column type File default format

Char(n) Text of n characters.

Date Integer (4 bytes)

Int(n) Integer (4 bytes)

Smallint(n) Short integer (2 bytes)

Tinyint Char (1 Byte)

Bigint(n) Large integer (8 bytes)

Double(n,d) Double floating point (8 bytes)

However, the column type need not necessarily match the field format within the table file. This occurs

for field formats that correspond to numeric types that are not handled by CONNECT9. Indeed, BIN table

files may internally contain float numbers or binary numbers of any byte length in big-endian or little-

8 Sometimes it can be a physical record if LF or CRLF have been written in the file.
9 Most of these are obsolete because CONNECT supports all column types except FLOAT.

- 30 -

endian representation10. Also, as in DOS or FIX tables, you may want to handle some character fields as

numeric or vice versa.

This is why it is possible to specify the field format when it does not correspond to the column type

default using the field_format column option in the CREATE TABLE statement. Here are the available field

formats for BIN tables:

Field_format Internal representation

[n]{L|B|H}[n] n bytes binary number in little endian, big endian or host endian representation.

C Characters string (n bytes)

I Integer (4 bytes)

D Double float (8 bytes)

S Short integer (2 bytes)

T Tiny integer (1 byte)

G Big integer (8 bytes)

F or R Real or float (Floating point number on 4 bytes)

X Use the default format field for the column type

All field formats except the first one are a one-character specification11. ‘X’ is equivalent to not

specifying the field format. For the ‘C’ character specification, n is the column width as specified with

the column type. For one character formats the number of bytes of the numeric fields corresponds to

what it is on most platforms. However, it could vary for some. The G, I, S and T formats are deprecated

because they correspond to supported data types and may not be supported in future versions.

Here is an example of a BIN table. The file record layout is supposed to be:

NNNNCCCCCCCCCCIIIISSFFFFSS

Here N represents numeric characters, C any characters, I integer bytes, S short integer bytes, and F float

number bytes. The IIII field contains a date in numeric format.

The table could be created by:

create table testbal (

fig int(4) not null field_format='C',

name char(10) not null,

birth date not null field_format='L',

id char(5) not null field_format='L2',

salary double(9,2) not null default 0.00 field_format='F',

dept int(4) not null field_format='L2')

engine=CONNECT table_type=BIN block_size=5 file_name='Testbal.dat';

Specifying the little-endian representation for binary values is not useful on most machines, but makes

the create table statement portable on a machine using big endian, as well as the table file.

The field offsets and the file record length being calculated according to the column internal format,

eventually modified by the field format, it is not necessary to specify them for a packed binary file

without line ending. If a line ending is desired, specify the ending option or specify the lrecl option

adding the ending width. The table can be filled by:

insert into testbal values

(5500,'ARCHIBALD','1980-01-25','3789',4380.50,318),

(123,'OLIVER','1953-08-10','23456',3400.68,2158),

(3123,'FOO','2002-07-23','888',default,318);

10 The default endian representation used in the table file can be specified by setting the ENDIAN option

as ‘L’ or ‘B’ in the option list.
11 It can be specified with more than one character, but only the first one is significant.

- 31 -

Note that the types of the inserted values must match the column type, not the field format type.

The query:

select * from testbal;

Returns:

fig name birth id salary dept

5500 ARCHIBALD 1980-01-25 3789 4380.50 318

123 OLIVER 1953-08-10 23456 3400.68 2158

3123 FOO 2002-07-23 888 0.00 318

Numeric fields alignment

In binary files, numeric fields and record length can be aligned on 4 or 8-byte boundaries to optimize

performances on certain processors. This can be modified in the OPTION_LIST with an “align” option

(“packed” meaning align=1 is the default).

VEC Table Type (Vertical Partitioning)
Warning: Avoid using this table type in production applications. This file format is specific to

CONNECT and may not be supported in future versions.

Tables of type VEC are binary files that in some cases can provide good performance on read-intensive

query workloads. CONNECT organizes their data on disk as columns of values from the same attribute,

as opposed to storing it as rows of tabular records. This organization means that when a query needs to

access only a few columns of a particular table, only those columns need to be read from disk.

Conversely, in a row-oriented table, all values in a table are typically read from disk, wasting I/O

bandwidth.

CONNECT provides two integral VEC formats, in which each column’s data is adjacent.

Integral Vector Formats

In these true vertical formats, the VEC files are made of all the data of the first column, followed by all

the data of the second column etc. All this can be in one physical file or each column data can be in a

separate file. In the first case, the option MAX_ROWS=m, where m is the estimate of the maximum size

(number of rows) of the table, must be specified to be able to insert some new records. This leaves an

empty space after each column area in which new data can be inserted. In the second case, the “Split”

option can be specified12 at table creation and each column will be stored in a file named sequentially

from the table file name followed by the rank of the column. Inserting new lines can freely augment such

a table.

Differences between vector formats

These formats correspond to different needs. The integral vector format provides the best performance

gain. It will be chosen when the speed of decisional queries must be optimized.

In the case of a unique file, inserting new data will be limited but there will be only one open and close

to do. However, the size of the table cannot be calculated from the file size because of the eventual

unused space in the file. It must be kept in a header containing the maximum number of rows and the

current number of valid rows in the table. To achieve this, specify the option Header=n when creating

the table. If n=1 the header will be placed at the beginning of the file, if n=2 it will be a separate file with

the type ‘.blk’, and if n=3 the header will be place at the end of the file. This last value is provided

because batch inserting is sometimes slower when the header is at the beginning of the file. If not

specified, the header option will default to 2 for this table type.

12 The SPLIT option is true by default when MAX_ROW is not specified or 0.

- 32 -

On the other hand, the “Split” format with separate files have none of these issues, and is a much safer

solution when the table must frequently inserted or shared among several users. For instance:

create table vtab (

a int not null,

b char(10) not null)

engine=CONNECT table_type=VEC file_name='vt.vec';

This table, split by default, will have the column values in files vt1.vec and vt2.vec.

For vector tables, the option BLOCK_SIZE=n is used for block reading and writing; however, to have a

file made of blocks of equal size, the internal value of the MAX_ROWS=m option is eventually increased

to become a multiple of n.

Like for BIN tables, numeric values are stored using platform internal layout, the correspondence between

column types and internal format being the same than the default ones given above for BIN. However,

field formats are not available for VEC tables.

Header Option

This applies to VEC tables that are not split. Because the file size depends on the MAX_ROWS value,

CONNECT cannot know how many valid records exist in the file. Depending on the value of the HEADER

option, this information is stored in a header that can be placed at the beginning of the file, at the end of

the file or in a separate file called fn.blk. The valid values for the HEADER option are:

0 Defaults to 2 for standard tables and to 3 for inward tables.

1 The header is at the beginning of the file.

2 The header is in a separate file.

3 The header is at the end of the file.

The value 2 can be used when dealing with files created by another application with no header. The value

3 makes sometimes inserting in the file faster than when the header is at the beginning of the file.

Note: VEC being a file format specific to CONNECT, no big endian / little endian conversion is

provided. These files are not portable between machines using a different byte order setting.

CSV and FMT Table Types
Many source data files are formatted with variable length fields and records. The simplest format, known

as CSV (Comma Separated Variables), has column fields separated by a separator character. By default,

the separator is a comma but can be specified by the SEP_CHAR option as any character, for instance a

semi-colon.

If the CSV file first record is the list of column names, specifying the HEADER=1 option will skip the first

record on reading. On writing, if the file is empty, the column names record is automatically written.

For instance, given the following people.csv file:

Name;birth;children

"Archibald";17/05/01;3

"Nabucho";12/08/03;2

You can create the corresponding table by:

create table people (

name char(12) not null,

birth date not null date_format='DD/MM/YY',

children smallint(2) not null)

engine=CONNECT table_type=CSV file_name='people.csv'

header=1 sep_char=';' quoted=1;

- 33 -

For CSV tables, the flag column option is the rank of the column into the file starting from 1 for the

leftmost column. This is to enable having column displayed in a different order than in the file and/or to

define the table specifying only some columns of the CSV file. For instance:

create table people (

name char(12) not null,

children smallint(2) not null flag=3,

birth date not null flag=2 date_format='DD/MM/YY')

engine=CONNECT table_type=CSV file_name='people.csv'

header=1 sep_char=';' quoted=1;

In this case the command:

select * from people;

will display the table as:

name children birth

Archibald 3 2001-05-17

Nabucho 2 2003-08-12

Many applications produce CSV files having some fields quoted, in particular because the field text

contains the separator character. For such files, specify the 'QUOTED=n' option to indicate the level of

quoting and/or the 'QCHAR=c' to specify what is this eventual quoting character, which is " by default.

Quoting with single quotes must be specified as QCHAR=''''. On writing, fields will be quoted

depending on the value of the quoting level, which is –1 by default meaning no quoting:

0 The fields between quotes are read and the quotes discarded. On writing, fields will be quoted only

if they contain the separator character or begin with the quoting character. If they contain the

quoting character, it will be doubled.

1 Only text fields will be written between quotes, except null fields. This includes also the column

names of an eventual header.

2 All fields will be written between quotes, except null fields.

3 All fields will be written between quotes, including null fields.

Files written this way are successfully read by most applications including spreadsheets.

Note 1: If only the QCHAR option is specified, the QUOTED option will default to 1.

Note 2: For CSV tables whose separator is the tab character, specify sep_char='\t'.

Note 3: When creating a table on an existing CSV file, you can leave CONNECT analyze the file and

make the column description. However, this is a not an elaborate analysis of the file and, for instance,

DATE fields will not be recognized as such but will be regarded as string fields.

Note 4: The FIELD_FORMAT option can be used with CSV table columns and has the same meaning than

for DOS or FIX tables. However, if the decimal separator is set to a comma and the field separator is also

the comma (the default if not specified) this will be ambiguous and will lead to error unless the fields are

all quoted (Quoting >= 2).

Note 5: For quoted columns, the field length must include eventual quotes.

Note 6: When only some columns are defined, CONNECT cannot calculate the record length. Therefore,

the LRECL option must be specified. This also applies when column names are changed and the HEADER

option is true.

- 34 -

Bad record error processing

CSV files often contain ill-formatted records. When this happens the process aborts with a message such

as:

Bad format line 3 field 4 of funny.txt

When you know that your file contains records that are ill formatted and should be eliminated from

normal processing, set the “maxerr” option of the CREATE TABLE statement, for instance:

Option_list='maxerr=100'

This will indicate that no error message be raised for the 100 first wrong lines. You can set Maxerr to a

number greater than the number of wrong lines in your files to ignore them and get no errors.

Additionally, the “accept” option permit to keep those ill formatted lines with the bad field, and all

succeeding fields of the record, nullified. If “accept” is specified without “maxerr”, all ill formatted lines

will be accepted.

FMT type

FMT tables handle files of various formats that are an extension of the concept of CSV files. CONNECT

supports these files providing all lines have the same format and that all fields present in all records are

recognizable (optional fields must have recognizable delimiters). These files are made by specific

application and CONNECT handle them in read only mode.

FMT tables must be created as CSV tables, specifying their type as FMT. In addition, each column

description must be added its format specification.

Column Format Specification of FMT tables

The input format for each column is specified as a FIELD_FORMAT option. A simple example is:

IP Char(15) not null field_format=' %n%s%n',

In the above example, the format for this (1st) field is ' %n%s%n'. Note that the blank character at the

beginning of this format is significant. No trailing blank should be specified in the column formats.

The syntax and meaning of the column input format is the one of the C scanf function.

However, CONNECT uses the input format in a specific way. Instead of using it to directly store the

input value in the column buffer; it uses it to delimit the sub string of the input record that contains the

corresponding column value. Retrieving this value is done later by the column functions as for standard

CSV files.

Therefore, all column formats are made of five components:

1. An eventual description of what is met and ignored before the column value.

2. A marker of the beginning of the column value written as %n.

3. The format specification of the column value itself.

4. A marker of the end of the column value written as %n (or %m for optional fields).

5. An eventual description of what is met after the column value (not valid is %m was used).

For example, taking the file funny.txt:

12345,'BERTRAND',#200;5009.13

 56, 'POIROT-DELMOTTE' ,#4256 ;18009

345 ,'TRUCMUCHE' , #67; 19000.25

You can make a table fmtsample with 4 columns ID, NAME, DEPNO and SALARY, using the Create

Table statement and column formats:

- 35 -

create table FMTSAMPLE (

ID Integer(5) not null field_format=' %n%d%n',

NAME Char(16) not null field_format=' , ''%n%[^'']%n''',

DEPNO Integer(4) not null field_format=' , #%n%d%n',

SALARY Double(12,2) not null field_format=' ; %n%f%n')

Engine=CONNECT table_type=FMT file_name='funny.txt';

Field 1 is an integer (%d) with eventual leading blanks.

Field 2 is separated from field 1 by optional blanks, a comma, and other optional blanks and is between

single quotes. The leading quote is included in component 1 of the column format, followed by the %n

marker. The column value is specified as %[^'] meaning to keep any characters read until a quote is

met. The ending marker (%n) is followed by the 5th component of the column format, the single quote

that follows the column value.

Field 3, also separated by a comma, is a number preceded by a pound sign.

Field 4, separated by a semicolon eventually surrounded by blanks, is a number with an optional decimal

point (%f).

This table will be displayed as:

ID NAME DEPNO SALARY

12345 BERTRAND 200 5009.13

56 POIROT-DELMOTTE 4256 18009.00

345 TRUCMUCHE 67 19000.25

Optional Fields

To be recognized, a field normally must be at least one-character long. For instance, a numeric field must

have at least one digit, or a character field cannot be void. However, many existing files do not follow

this format.

Let us suppose for instance that the preceding example file could be:

12345,'BERTRAND',#200;5009.13

 56, 'POIROT-DELMOTTE' ,# ;18009

345 ,'' , #67; 19000.25

This will display an error message such as “Bad format line x field y of FMTSAMPLE”. To avoid this

and accept these records, the corresponding fields must be specified as “optional”. In the above example,

fields 2 and 3 can have null values (in lines 3 and 2 respectively). To specify them as optional, their

format must be terminated by %m (instead of the second %n). A statement such as this can do the table

creation:

create table FMTAMPLE (

ID Integer(5) not null field_format=' %n%d%n',

NAME Char(16) not null field_format=' , ''%n%[^'']%m',

DEPNO Integer(4) field_format=''' , #%n%d%m',

SALARY Double(12,2) field_format=' ; %n%f%n')

Engine=CONNECT table_type=FMT file_name='funny.txt';

Note that, because the statement must be terminated by %m with no additional characters, skipping the

ending quote of field 2 was moved from the end of the second column format to the beginning of the

third column format.

The table result is:

- 36 -

ID NAME DEPNO SALARY

12345 BERTRAND 200 5,009.13

56 POIROT-DELMOTTE NULL 18,009.00

345 NULL 67 19,000.25

Missing fields are replaced by null values if the column is nullable, blanks for character strings and 0 for

numeric fields if it is not.

Note 1:

Because the formats are specified between quotes, quotes belonging to the formats must be doubled or

escaped to avoid a CREATE TABLE statement syntax error.

Note 2:

Characters separating columns can be included as well in component 5 of the preceding column format

or in component 1 of the succeeding column format but for blanks, which should be always included in

component 1 of the succeeding column format because line trailing blanks can be sometimes lost. This

is also mandatory for optional fields.

Note 3:

Because the format is mainly used to find the sub-string corresponding to a column value, the field

specification does not necessarily match the column type. For instance supposing a table contains two

integer columns, NBONE and NBTWO, the two lines describing these columns could be:

NBONE integer(5) not null field_format=' %n%d%n',

NBTWO integer(5) field_format=' %n%s%n',

The first one specifies a required integer field (%d), the second line describes a field that can be an

integer, but can be replaced by a "-" (or any other) character. Specifying the format specification for this

column as a character field (%s) enables to recognize it with no error in all cases. Later on, this field will

be converted to integer by the column read function, and a null 0 value will be generated for field

specified in their format as non-numeric.

Bad record error processing

When no match if found for a column field the process aborts with a message such as:

Bad format line 3 field 4 of funny.txt

This can mean as well that one line of the input line is ill formed or that the column format for this field

has been wrongly specified. When you know that your file contains records that are ill formatted and

should be eliminated from normal processing, set the “maxerr” option of the CREATE TABLE statement,

for instance:

Option_list='maxerr=100'

This will indicate that no error message be raised for the 100 first wrong lines. You can set Maxerr to a

number greater than the number of wrong lines in your files to ignore them and get no errors.

Additionally, the “accept” option permit to keep those ill formatted lines with the bad field, and all

succeeding fields of the record, nullified. If “accept” is specified without “maxerr”, all ill formatted lines

will be accepted.

Fields containing a formatted Date

A special case is one of columns containing a formatted date. In this case, two formats must be specified:

1. The field recognition format used to delimit the date in the input record.

2. The date format used to interpret the date.

- 37 -

3. The field length option if the date representation is different than the standard type size.

For example, let us suppose we have a web log source file containing records such a:

165.91.215.31 - - [17/Jul/2001:00:01:13 -0400] - "GET /usnews/home.htm HTTP/1.1" 302

The create table statement shall be like this:

create table WEBSAMP (

IP char(15) not null field_format='%n%s%n',

DATE datetime not null field_format=' - - [%n%s%n -0400]'

date_format='DD/MMM/YYYY:hh:mm:ss' field_length=20,

FILE char(128) not null field_format=' - "GET %n%s%n',

HTTP double(4,2) not null field_format=' HTTP/%n%f%n"',

NBONE int(5) not null field_format=' %n%d%n')

Engine=CONNECT table_type=FMT lrecl=400

file_name='e:\\data\\token\\Websamp.dat';

Note 1: Here, field_length=20 was necessary because the default size for datetime columns is only

19. The lrecl=400 was also specified because the actual file contains more information in each record

making the record size calculated by default too small.

Note 2: The file name could have been specified as 'e:/data/token/Websamp.dat'.

Note 3: FMT tables are currently read only.

- 38 -

NoSQL Table Types
They are based on files that do not match the relational format but often represent hierarchical data.

CONNECT can handle JSON, INI-CFG, XML, and some HTML files.

The way it is done is different from what MySQL or PostgreSQL does. In addition to including in a table

some column values of a specific data format (JSON, XML) to be handled by specific functions,

CONNECT can directly uses JSON, XML or INI files that can be produced by other applications and

this is the table definition that describes where and how the contained information must be retrieved.

This is also different from what MariaDB does with dynamic columns, which by the way is close from

what MySQL and PostgreSQL do with the JSON column type.

XML Table Type
CONNECT supports tables represented by XML files. For these tables, the standard input/output

functions of the operating system are not used but the parsing and processing of the file is delegated to a

specialized library. Currently two such systems are supported: libxml2, a part of the GNOME framework,

but which does not require GNOME and, on Windows, MS-DOM (DOMDOC) the Microsoft standard

support of XML documents.

DOMDOC is the default for the Windows version of CONNECT and libxml2 is always used on other

systems. On Windows, the choice can be specified using the XMLSUP create table list option, for instance

specifying option_list='xmlsup=libxml2'.

Creating XML tables

First, it must be understood that XML is a very general language used to encode data having any

structure. In particular, the tag hierarchy in an XML file describes a tree structure of the data. For

instance, consider the file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<BIBLIO SUBJECT="XML">

 <BOOK ISBN="9782212090819" LANG="fr" SUBJECT="applications">

 <AUTHOR>

 <FIRSTNAME>Jean-Christophe</FIRSTNAME>

 <LASTNAME>Bernadac</LASTNAME>

 </AUTHOR>

 <AUTHOR>

 <FIRSTNAME>François</FIRSTNAME>

 <LASTNAME>Knab</LASTNAME>

 </AUTHOR>

 <TITLE>Construire une application XML</TITLE>

 <PUBLISHER>

 <NAME>Eyrolles</NAME>

 <PLACE>Paris</PLACE>

 </PUBLISHER>

 <DATEPUB>1999</DATEPUB>

 </BOOK>

 <BOOK ISBN="9782840825685" LANG="fr" SUBJECT="applications">

 <AUTHOR>

 <FIRSTNAME>William J.</FIRSTNAME>

 <LASTNAME>Pardi</LASTNAME>

 </AUTHOR>

 <TRANSLATOR PREFIX="adapté de l'anglais par">

 <FIRSTNAME>James</FIRSTNAME>

 <LASTNAME>Guerin</LASTNAME>

 </TRANSLATOR>

 <TITLE>XML en Action</TITLE>

 <PUBLISHER>

 <NAME>Microsoft Press</NAME>

 <PLACE>Paris</PLACE>

- 39 -

 </PUBLISHER>

 <DATEPUB>1999</DATEPUB>

 </BOOK>

</BIBLIO>

It represents data having the structure:

 <BIBLIO>

 __________|_________

 | |

 <BOOK:ISBN,LANG,SUBJECT> |

 ______________|_______________ |

 | | | | |

 <AUTHOR> <TITLE> <PUBLISHER> <DATEPUB> |

 ____|____ ___|____ |

 | | | | | |

<FIRST> | <LAST> <NAME> <PLACE> |

 | |

 <AUTHOR> <BOOK:ISBN,LANG,SUBJECT>

 ____|____ ______________________|__________________

 | | | | | | |

<FIRST> <LAST> <AUTHOR> <TRANSLATOR> <TITLE> <PUBLISHER> <DATEPUB>

 _____|_ ___|___ ___|____

 | | | | | |

 <FIRST> <LAST> <FIRST> <LAST> <NAME> <PLACE>

This structure seems at first view far from being tabular. However, modern database management

systems, including MariaDB, implement something close to the relational model and work on tables that

are structurally not hierarchical but tabular with rows and columns.

Nevertheless, CONNECT can do it. Of course, it cannot guess what you want to extract from the XML

structure, butstructure but gives you the possibility to specify it when you create the table13.

Let us take a first example. Suppose you want to make a table from the above document, displaying the

node contents.

For this, you can define a table xsamptag as:

create table xsamptag (

AUTHOR char(50),

TITLE char(32),

TRANSLATOR char(40),

PUBLISHER char(40),

DATEPUB int(4))

engine=CONNECT table_type=XML file_name='Xsample.xml';

It will be displayed as:

AUTHOR TITLE TRANSLATOR PUBLISHER DATEPUB

Jean-Christophe Bernadac Construire une application XML NULL<null> Eyrolles Paris 1999

William J. Pardi XML en Action James Guerin Microsoft Press Paris 1999

Let us try to understand what happened. By default, the columns names correspond to tag names. Because

this file is rather simple, CONNECT could default the top tag of the table as the root node <BIBLIO> of

the file, and the row tags as the <BOOK> children of the table tag. In a more complex file, this should

have been specified, as we will see later. Note that we didn’t have to worry about the sub-tags such as

13 CONNECT does not claim to be able to deal with any XML document. Besides, those that can usefully

be processed for data analysis are likely to have a structure that can easily be transformed into a table.

- 40 -

<FIRSTNAME> or <LASTNAME> because CONNECT automatically retrieves the entire text contained in

a tag and its sub-tags14.

Only the first author of the first book appears. This is because only the first occurrence of a column tag

has been retrieved so the result has a proper tabular structure. We will see later what we can do about

that.

How can we retrieve the values specified by attributes? By using a Coltype table option to specify the

default column type. The value ‘@’ means that column names match attribute names. Therefore, we can

retrieve them by creating a table such as:

create table xsampattr (

ISBN char(15),

LANG char(2),

SUBJECT char(32))

engine=CONNECT table_type=XML file_name='Xsample.xml'

option_list='Coltype=@';

This table returns the following:

ISBN LANG SUBJECT

9782212090819 fr applications

9782840825685 fr applications

Now to define a table that will give us all the previous information, we must specify the column type for

each column. Because in the next statement the column type defaults to Node, the field_format column

parameter was used to indicate which columns are attributes:

create table xsamp (

ISBN char(15) field_format='@',

LANG char(2) field_format='@',

SUBJECT char(32) field_format='@',

AUTHOR char(50),

TITLE char(32),

TRANSLATOR char(40),

PUBLISHER char(40),

DATEPUB int(4))

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK';

Once done, we can enter the query:

select subject, lang, title, author from xsamp;

This will return the following result:

SUBJECT LANG TITLE AUTHOR

applications fr Construire une application XML Jean-Christophe Bernadac

applications fr XML en Action William J. Pardi

Note that we have been lucky. Because unlike SQL, XML is case sensitive and the column names have

matched the node names only because the column names were given in upper case. Note also that the

order of the columns in the table could have been different from the order in which the nodes appear in

the XML file.

14 With libxml2, sub tags text can be separated by 0 or several blanks depending on the structure and

indentation of the data file.

- 41 -

Using Xpath’s with XML tables

Xpath is used by XML to locate and retrieve nodes. The table’s main node Xpath is specified by the

TABNAME option. If just the node name is given, CONNECT constructs an Xpath such as ‘//BIBLIO’ in

the example above that should retrieve the BIBLIO node wherever it is within the XML file.

The row nodes are by default the children of the table node. However, for instance to eliminate some

children nodes that are not real row nodes, the row node name can be specified using the ROWNODE sub-

option of the OPTION_LIST option.

The field_format options we used above can be specified to locate more precisely where and what

information to retrieve using an Xpath-like syntax. For instance:

create table xsampall (

isbn char(15) field_format='@ISBN',

language char(2) field_format='@LANG',

subject char(32) field_format='@SUBJECT',

authorfn char(20) field_format='AUTHOR/FIRSTNAME',

authorln char(20) field_format='AUTHOR/LASTNAME',

title char(32) field_format='TITLE',

translated char(32) field_format='TRANSLATOR/@PREFIX',

tranfn char(20) field_format='TRANSLATOR/FIRSTNAME',

tranln char(20) field_format='TRANSLATOR/LASTNAME',

publisher char(20) field_format='PUBLISHER/NAME',

location char(20) field_format='PUBLISHER/PLACE',

year int(4) field_format='DATEPUB')

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK';

This very flexible column parameter serves several purposes:

• To specify the tag name, or the attribute name if different from the column name.

• To specify the type (tag or attribute) by a prefix of ‘@’ for attributes.

• To specify the path for sub-tags using the ‘/’ character.

This path is always relative to the current context (the column top node) and cannot be specified as an

absolute path from the document root, therefore a leading ‘/’ cannot be used. The path cannot be variable

in node names or depth, therefore using ‘//’ is not allowed.

The query:

select isbn, title, translated, tranfn, tranln, location from

xsampall where translated is not null;

replies:

ISBN TITLE TRANSLATED TRANFN TRANLN LOCATION

9782840825685 XML en Action adapté de l'anglais par James Guerin Paris

Libxml2 default name space issue

An issue with libxml2 is that some files can declare a default name space in their root node. Because

Xpath only searches in that name space, the nodes will not be found if they are not prefixed. If this

happens, specify the TABNAME option as an Xpath ignoring the current name space:

TABNAME="//*[local-name()='BIBLIO']"

This must also be done for the default of specified Xpath of the not attribute columns. For instance:

- 42 -

title char(32) field_format="*[local-name()='TITLE']",

Note: This raises an error (and is useless anyway) with DOMDOC.

Direct access on XML tables

Direct access is available on XML tables. This means that XML tables can be sorted and used in joins,

even in the one-side of the join.

However, building a permanent index is not yet implemented. It is unclear whether this can be useful.

Indeed, the DOM implementation that is used to access these tables firstly parses the whole file and

constructs a node tree in memory. This may often be the longest part of the process, so the use of an

index would not be of great value. Note also that this limits the XML files to a reasonable size. Anyway,

when speed is important, this table type is not the best to use. Therefore, in these cases, it is probably

better to convert the file to another type by inserting the XML table in another table of a more appropriate

type for performance.

Accessing tags with namespaces

With the Windows DOMDOC support, this can be done using the prefix in the tabname column option

and/or field_format column option. For instance, given the file gns.xml:

<?xml version="1.0" encoding="UTF-8"?>

<gpx xmlns:gns="http:dummy">

<gns:trkseg>

<trkpt lon="-121.9822235107421875" lat="37.3884925842285156">

<gns:ele>6.610851287841797</gns:ele>

<time>2014-04-01T14:54:05.000Z</time>

</trkpt>

<trkpt lon="-121.9821929931640625" lat="37.3885803222656250">

<ele>6.787827968597412</ele>

<time>2014-04-01T14:54:08.000Z</time>

</trkpt>

<trkpt lon="-121.9821624755859375" lat="37.3886299133300781">

<ele>6.771987438201904</ele>

<time>2014-04-01T14:54:10.000Z</time>

</trkpt>

</gns:trkseg>

</gpx>

and the defined CONNECT table:

CREATE TABLE xgns (

`lon` double(21,16) NOT NULL `field_format`='@',

`lat` double(20,16) NOT NULL `field_format`='@',

`ele` double(21,16) NOT NULL `field_format`='gns:ele',

`time` datetime date_format="YYYY-MM-DD 'T' hh:mm:ss '.000Z'"

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `table_type`=XML

`file_name`='gns.xml' tabname='gns:trkseg'

option_list='xmlsup=domdoc';

select * from xgns;

Displays:

- 43 -

lon lat ele time

-121,982223510742 37,3884925842285 6,6108512878418 01/04/2014 14:54:05

-121,982192993164 37,3885803222656 0 01/04/2014 14:54:08

-121,982162475586 37,3886299133301 0 01/04/2014 14:54:10

Only the prefixed ‘ele’ tag is recognized.

However, this does not work with the libxml2 support. The solution is then to use a function ignoring

the name space:

CREATE TABLE xgns2 (

`lon` double(21,16) NOT NULL `field_format`='@',

`lat` double(20,16) NOT NULL `field_format`='@',

`ele` double(21,16) NOT NULL `field_format`="*[local-name()='ele']",

`time` datetime date_format="YYYY-MM-DD 'T' hh:mm:ss '.000Z'"

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `table_type`=XML

`file_name`='gns.xml' tabname="*[local-name()='trkseg']"

option_list='xmlsup=libxml2';

Then :

select * from xgns2;

Displays:

lon lat ele time

-121,982223510742 37,3884925842285 6,6108512878418 01/04/2014 14:54:05

-121,982192993164 37,3885803222656 6.7878279685974 01/04/2014 14:54:08

-121,982162475586 37,3886299133301 6.7719874382019 01/04/2014 14:54:10

This time, all ‘ele` tags are recognized. This solution does not work with DOMDOC.

Having Columns defined by Discovery

It is possible to let the MariaDB discovery process do the job of column specification. When columns

are not defined in the CREATE TABLE statement, CONNECT endeavors to analyze the XML file and to

provide the column specifications. This is possible only for true XML tables, but not for HTML tables.

For instance, the xsamp table could have been created specifying:

create table xsamp

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK';

Let’s check how it was actually specified using the SHOW CREATE TABLE statement:

CREATE TABLE `xsamp` (

 `ISBN` char(13) NOT NULL `FIELD_FORMAT`='@',

 `LANG` char(2) NOT NULL `FIELD_FORMAT`='@',

 `SUBJECT` char(12) NOT NULL `FIELD_FORMAT`='@',

 `AUTHOR` char(24) NOT NULL,

 `TRANSLATOR` char(12) DEFAULT NULL,

 `TITLE` char(30) NOT NULL,

 `PUBLISHER` char(21) NOT NULL,

 `DATEPUB` char(4) NOT NULL

- 44 -

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='XML'

`FILE_NAME`='E:/Data/Xml/Xsample.xml' `TABNAME`='BIBLIO'

`OPTION_LIST`='rownode=BOOK';

It is equivalent except for the column sizes that have been calculated from the file as the maximum length

of the corresponding column when it was a normal value. Also, all columns are specified as type CHAR

because XML does not provide information about the node content data type. Nullable is set to true if

the column is missing in some rows.

If a more complex definition is desired, you can ask CONNECT to analyse the XPATH up to a given

level using the LEVEL option in the option list. The level value is the number of nodes that are taken in

the XPATH. For instance:

create table xsampall

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK,Level=1';

This will define the table as:

CREATE TABLE `xsampall` (

 `ISBN` char(13) NOT NULL `FIELD_FORMAT`='@',

 `LANG` char(2) NOT NULL `FIELD_FORMAT`='@',

 `SUBJECT` char(12) NOT NULL `FIELD_FORMAT`='@',

 `AUTHOR_FIRSTNAME` char(15) NOT NULL

`FIELD_FORMAT`='AUTHOR/FIRSTNAME',

 `AUTHOR_LASTNAME` char(8) NOT NULL

`FIELD_FORMAT`='AUTHOR/LASTNAME',

 `TRANSLATOR_PREFIX` char(24) DEFAULT NULL

`FIELD_FORMAT`='TRANSLATOR/@PREFIX',

 `TRANSLATOR_FIRSTNAME` char(7) DEFAULT NULL

`FIELD_FORMAT`='TRANSLATOR/FIRSTNAME',

 `TRANSLATOR_LASTNAME` char(6) DEFAULT NULL

`FIELD_FORMAT`='TRANSLATOR/LASTNAME',

 `TITLE` char(30) NOT NULL,

 `PUBLISHER_NAME` char(15) NOT NULL

`FIELD_FORMAT`='PUBLISHER/NAME',

 `PUBLISHER_PLACE` char(5) NOT NULL

`FIELD_FORMAT`='PUBLISHER/PLACE',

 `DATEPUB` char(4) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='XML'

`FILE_NAME`='Xsample.xml' `TABNAME`='BIBLIO'

`OPTION_LIST`='rownode=BOOK,Level=1';

This method can be used as a quick way to make a “template” table definition that can later be edited to

make the desired definition. In particular, column names are constructed from all the nodes of their path

in order to have distinct column names. This can be manually edited to have the desired names, provided

their XPATH is not modified.

To have a preview of how columns will be defined, you can use a catalog table like this:

create table xsacol

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO' option_list='rownode=BOOK,Level=1' catfunc=col;

And when asking:

select column_name Name, type_name Type, column_size Size,

nullable, xpath from xsacol;

- 45 -

You get the description of what the table columns will be:

Name Type Size Nullable Xpath

ISBN CHAR 13 0 @

LANG CHAR 2 0 @

SUBJECT CHAR 12 0 @

AUTHOR_FIRSTNAME CHAR 15 0 AUTHOR/FIRSTNAME

AUTHOR_LASTNAME CHAR 8 0 AUTHOR/LASTNAME

TRANSLATOR_PREFIX CHAR 24 1 TRANSLATOR/@PREFIX

TRANSLATOR_FIRSTNAME CHAR 7 1 TRANSLATOR/FIRSTNAME

TRANSLATOR_LASTNAME CHAR 6 1 TRANSLATOR/LASTNAME

TITLE CHAR 30 0

PUBLISHER_NAME CHAR 15 0 PUBLISHER/NAME

PUBLISHER_PLACE CHAR 5 0 PUBLISHER/PLACE

DATEPUB CHAR 4 0

Write operations on XML tables

You can freely use the Update, Delete and Insert commands with XML tables. However, you must

understand that the format of the updated or inserted data follows the specifications of the table you

created, not the ones of the original source file. For instance, let us suppose we insert a new book using

the xsamp table (not the xsampall table) with the command:

insert into xsamp

(isbn, lang, subject, author, title, publisher,datepub)

values('9782212090529','fr','général','Alain Michard',

'XML, Langage et Applications','Eyrolles Paris',1998);

Then if we ask:

select subject, author, title, translator, publisher from xsamp;

Everything seems correct when we get the result:

SUBJECT AUTHOR TITLE TRANSLATOR PUBLISHER

applications Jean-Christophe Bernadac Construire une application XML NULL Eyrolles Paris

applications William J. Pardi XML en Action James Guerin Microsoft Press Paris

général Alain Michard XML, Langage et Applications NULL Eyrolles Paris

However, if we enter the apparently equivalent query on the xsampall table, based on the same file:

select subject,

concat(authorfn, ' ', authorln) author , title,

concat(tranfn, ' ', tranln) translator,

concat(publisher, ' ', location) publisher from xsampall;

this returns an apparently wrong answer:

SUBJECT AUTHOR TITLE TRANSLATOR PUBLISHER

applications Jean-Christophe Bernadac Construire une application XML Eyrolles Paris

applications William J. Pardi XML en Action James Guerin Microsoft Press Paris

général XML, Langage et Applications

- 46 -

What happened here? Simply, because we used the xsamp table to do the Insert, what has been inserted

within the XML file had the structure described for xsamp:

 <BOOK ISBN="9782212090529" LANG="fr" SUBJECT="général">

 <AUTHOR>Alain Michard</AUTHOR>

 <TITLE>XML, Langage et Applications</TITLE>

 <TRANSLATOR></TRANSLATOR>

 <PUBLISHER>Eyrolles Paris</PUBLISHER>

 <DATEPUB>1998</DATEPUB>

 </BOOK>

CONNECT cannot “invent” sub-tags that are not part of the xsamp table. Because these sub-tags do not

exist, the xsampall table cannot retrieve the information that should be attached to them. If we want to

be able to query the XML file by all the defined tables, the correct way to insert a new book to the file is

to use the xsampall table, the only one that addresses all the components of the original document:

delete from xsamp where isbn = '9782212090529';

insert into xsampall (isbn, language, subject, authorfn, authorln,

title, publisher, location, year)

values('9782212090529','fr','général','Alain','Michard',

'XML, Langage et Applications','Eyrolles','Paris',1998);

Now the added book, in the XML file, will have the required structure:

 <BOOK ISBN="9782212090529" LANG="fr" SUBJECT="général"

 <AUTHOR>

 <FIRSTNAME>Alain</FIRSTNAME>

 <LASTNAME>Michard</LASTNAME>

 </AUTHOR>

 <TITLE>XML, Langage et Applications</TITLE>

 <PUBLISHER>

 <NAME>Eyrolles</NAME>

 <PLACE>Paris</PLACE>

 </PUBLISHER>

 <DATEPUB>1998</DATEPUB>

 </BOOK>

Note: We used a column list in the Insert statements when creating the table, to avoid generating a

<TRANSLATOR> node with sub-nodes, all containing null values (this works on Windows only)

Multiple Nodes in the XML Document

Let us come back to the above example XML file. We have seen that the author node can be “multiple”

meaning that there can be more than one author of a book. What can we do to get the complete

information fitting the relational model? CONNECT provides you with two possibilities, butpossibilities

but restricted to only one such multiple node per table.

The first and most challenging one is to return as many rows than there are authors, the other columns

being repeated as if we had make a join between the author column and the rest of the table. To achieve

this, simply specify the “multiple” node name and the “expand” option when creating the table. For

instance, we can create the xsamp2 table like this:

create table xsamp2 (

ISBN char(15) field_format='@',

LANG char(2) field_format='@',

SUBJECT char(32) field_format='@',

AUTHOR char(40),

TITLE char(32),

TRANSLATOR char(32),

- 47 -

PUBLISHER char(32),

DATEPUB int(4))

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO'

option_list='rownode=BOOK,Expand=1,Mulnode=AUTHOR,Limit=2';

In this statement, the Limit option specifies the maximum number of values that will be expanded. If not

specified it defaults to 10. Any values above the limit will be ignored and a warning message issued15.

Now you can enter a query such as:

select isbn, subject, author, title from xsamp2;

This will retrieve and display the following result:

ISBN SUBJECT AUTHOR TITLE

9782212090819 applications Jean-Christophe Bernadac Construire une application XML

9782212090819 applications François Knab Construire une application XML

9782840825685 applications William J. Pardi XML en Action

9782212090529 général Alain Michard XML, Langage et Applications

In this case, this is as if the table had four rows. However if we enter the query:

select isbn, subject, title, publisher from xsamp2;

this time the result will be:

ISBN SUBJECT TITLE PUBLISHER

9782212090819 applications Construire une application XML Eyrolles Paris

9782840825685 applications XML en Action Microsoft Press Paris

9782212090529 général XML, Langage et Applications Eyrolles Paris

Because the author column does not appear in the query, the corresponding row was not expanded. This

is somewhat strange because this would have been different if we had been working on a table of a

different type. However, it is closer to the relational model for which there should not be two identical

rows (tuples) in a table. Nevertheless, you should be aware of this somewhat erratic behavior. For

instance:

select count(*) from xsamp2; /* Replies 4 3 */

select count(author) from xsamp2; /* Replies 4 */

select count(isbn) from xsamp2; /* Replies 3 */

select isbn, subject, title, publisher from xsamp2 where

author <> '';

This last query replies:

ISBN SUBJECT TITLE PUBLISHER

9782212090819 applications Construire une application XML Eyrolles Paris

9782212090819 applications Construire une application XML Eyrolles Paris

9782840825685 applications XML en Action Microsoft Press Paris

9782212090529 général XML, Langage et Applications Eyrolles Paris

15 This may cause some rows to be lost because an eventual WHERE clause on the “multiple” column is

applied only on the limited number of retrieved rows.

- 48 -

Even though the author column does not appear in the result, the corresponding row was expanded

because the multiple column was used in the where clause.

Intermediate Multiple Node

The “multiple” node can be an intermediate node. If we want to do the same expanding with the xsampall

table, there will be nothing more to do. The xsampall2 table can be created with:

create table xsampall2 (

isbn char(15) field_format='@ISBN',

language char(2) field_format='@LANG',

subject char(32) field_format='@SUBJECT',

authorfn char(20) field_format='AUTHOR/FIRSTNAME',

authorln char(20) field_format='AUTHOR/LASTNAME',

title char(32) field_format='TITLE',

translated char(32) field_format='TRANSLATOR/@PREFIX',

tranfn char(20) field_format='TRANSLATOR/FIRSTNAME',

tranln char(20) field_format='TRANSLATOR/LASTNAME',

publisher char(20) field_format='PUBLISHER/NAME',

location char(20) field_format='PUBLISHER/PLACE',

year int(4) field_format='DATEPUB')

engine=CONNECT table_type=XML file_name='Xsample.xml'

tabname='BIBLIO'

option_list='rownode=BOOK,Expand=1,Mulnode=AUTHOR,Limit=2';

The only difference is that the “multiple” node is an intermediate node in the path. The resulting table

can be seen with a query such as:

select subject, language lang, title, authorfn first, authorln

last, year from xsampall2;

This query displays:

SUBJECT LANG TITLE FIRST LAST YEAR

applications fr Construire une application XML Jean-Christophe Bernadac 1999

applications fr Construire une application XML François Knab 1999

applications fr XML en Action William J. Pardi 1999

général fr XML, Langage et Applications Alain Michard 1998

These composite tables, half array half tree, reserve some surprises for us when updating, deleting from

or inserting into them. Insert just cannot generate this structure; if two rows are inserted with just a

different author, two book nodes will be generated in the XML file. Delete always deletes one book node

and all its children nodes even if specified against only one author. Update is more complicated:

update xsampall2 set authorfn = 'Simon' where authorln = 'Knab';

update xsampall2 set year = 2002 where authorln = 'Bernadac';

update xsampall2 set authorln = 'Mercier' where year = 2002;

After these three updates, the first one two responding “Affected rows: 01” and the two otherslast one

responding “Affected rows: 12”, the last query answers:

- 49 -

subjectSUB

JECT

langL

ANG

titleTITLE firstFIRST lastLAST yearYEA

R

applicationsa

pplications

frfr Construire une application

XMLConstruire une application

XML

Jean-

ChristopheJean-

Christophe

MercierM

ercier

20022002

applicationsa

pplications

frfr Construire une application

XMLConstruire une application

XML

SimonFrançois MercierK

nab

20022002

applicationsa

pplications

frfr XML en ActionXML en Action William

J.William J.

PardiPardi 19991999

généralgénér

al

frfr XML, Langage et

ApplicationsXML, Langage et

Applications

AlainAlain MichardM

ichard

19981998

What must be understood here is that the Update modifies node values in the XML file, not cell values

in the relational table. The first update did not worked as expected, unable to retrieve the first name node

of the second author and changing it to a new value.normally The second update changed the year value

of the book and this shows for the two expanded rows because there is only one DATEPUB node for that

book. Because the third update applies to all rows having a certain date value, this row was retrieved but

not expanded because no author data appeared in the Where clause; consequently only the firstboth

author names was were updated.

Making a List of Multiple Values

Another way to see multiple values is to ask CONNECT to make a comma separated list of the multiple

node values. This time, it can only be done if the “multiple” node is not intermediate. For example, we

can modify the xsamp2 table definition by:

alter table xsamp2 option_list='rownode=BOOK,Mulnode=AUTHOR,Limit=3';

This time ‘Expand’ is not specified, and Limit gives the maximum number of items in the list. Now if

we enter the query:

select isbn, subject, author "AUTHOR(S)", title from xsamp2;

we will get the following result:

ISBN SUBJECT AUTHOR(S) TITLE

9782212090819 applications Jean-Christophe Bernadac, François Knab Construire une application XML

9782840825685 applications William J. Pardi XML en Action

9782212090529 général Alain Michard XML, Langage et Applications

Note that updating the “multiple” column is not possible because CONNECT does not know which of

the nodes to update.

This could not have been done with the xsampall2 table because the author node is intermediate in the

path, and making two lists, one of first names and another one of last names would not make sense

anyway.

What if a table contains several multiple nodes

This can be handled by creating several tables on the same file, each containing only one multiple node

and constructing the desired result using joins.

Support of HTML Tables

Most tables included in HTML documents cannot be processed by CONNECT because the HTML

language is often not compatible with the syntax of XML. In particular, XML requires all open tags to

- 50 -

be matched by a closing tag while it is sometimes optional in HTML. This is often the case concerning

column tags.

However, you can meet tables that respect the XML syntax but have some of the features of HTML

tables. For instance:

<?xml version="1.0"?>

<Beers>

 <table>

 <th><td>Name</td><td>Origin</td><td>Description</td></th>

 <tr>

 <td><brandName>Huntsman</brandName></td>

 <td><origin>Bath, UK</origin></td>

 <td><details>Wonderful hop, light alcohol</details></td>

 </tr>

 <tr>

 <td><brandName>Tuborg</brandName></td>

 <td><origin>Danmark</origin></td>

 <td><details>In small bottles</details></td>

 </tr>

 </table>

</Beers>

Here the different column tags are included in <td></td> tags as for HTML tables. You cannot just

add this tag in the Xpath of the columns, because the search is done on the first occurrence of each tag,

and this would cause this search to fail for all columns except the first one. This case is handled by

specifying the Colnode table option that gives the name of these column tags, for example:

create table beers (

`Name` char(16) field_format='brandName',

`Origin` char(16) field_format='origin',

`Description` char(32) field_format='details')

engine=CONNECT table_type=XML file_name='beers.xml'

tabname='table' option_list='rownode=tr,colnode=td';

The table will be displayed as:

Name Origin Description

Huntsman Bath, UK Wonderful hop, light alcohol

Tuborg Danmark In small bottles

However, you can deal with tables even closer to the HTML model. For example the coffee.htm file:

<TABLE summary="This table charts the number of cups of coffe

 consumed by each senator, the type of coffee (decaf

 or regular), and whether taken with sugar.">

 <CAPTION>Cups of coffee consumed by each senator</CAPTION>

 <TR>

 <TH>Name</TH>

 <TH>Cups</TH>

 <TH>Type of Coffee</TH>

 <TH>Sugar?</TH>

 </TR>

 <TR>

 <TD>T. Sexton</TD>

 <TD>10</TD>

 <TD>Espresso</TD>

 <TD>No</TD>

 </TR>

- 51 -

 <TR>

 <TD>J. Dinnen</TD>

 <TD>5</TD>

 <TD>Decaf</TD>

 <TD>Yes</TD>

 </TR>

</TABLE>

Here, column values are directly represented by the TD tag text. You cannot declare them as tags nor as

attributes. In addition, they are not located using their name but by their position within the row. Here is

how to declare such a table to CONNECT:

create table coffee (

`Name` char(16),

`Cups` int(8),

`Type` char(16),

`Sugar` char(4))

engine=connect table_type=XML file_name='coffee.htm'

tabname='TABLE' header=1 option_list='Coltype=HTML';

You specify the fact that columns are located by position by setting the Coltype option to ‘HTML’. Each

column position (0 based) will be the value of the flag column parameter that is set by default in sequence.

Now we are able to display the table:

Name Cups Type Sugar

T. Sexton 10 Espresso No

J. Dinnen 5 Decaf Yes

Note 1: We specified ‘header=n’ in the create statement to indicate that the first n rows of the table

are not data rows and should be skipped.

Note 2: In this last example, we did not specify the node names using the Rownode and Colnode options

because when Coltype is set to ‘HTML’ they default to 'Rownode=TR' and 'Colnode=TD'.

Note 3: The Coltype option is a word only the first character of which is significant. Recognized values

are:

T(ag) or N(ode) Column names match a tag name (the default).

A(ttribute) or @ Column names match an attribute name.

H(tml) or C(ol) or P(os) Column are retrieved by their position.

New file setting

Some create options are used only when creating a table on a new file, i. e. when inserting into a file that

does not exist yet. When specified, the ‘Header’ option will create a header row with the name of the

table columns. This is chiefly useful for HTML tables to be displayed on a web browser.

Some new list-options are used in this context:

Option Description

Encoding The encoding of the new document, defaulting to UTF-8.

Attribute A list of ‘attname=attvalue’ separated by ‘;’ to add to the table node.

HeadAttr An attribute list to be added to the header row node.

Let us see for instance, the following create statement:

create table handlers (

handler char(64),

- 52 -

version char(20),

author char(64),

description char(255),

maturity char(12))

engine=CONNECT table_type=XML file_name='handlers.htm'

tabname='TABLE' header=yes

option_list='coltype=HTML,encoding=ISO-8859-1,

attribute=border=1;cellpadding=5,headattr=bgcolor=yellow';

Supposing the table file does not exist yet, the first insert into that table, for instance by the following

statement:

insert into handlers select plugin_name, plugin_version,

plugin_author, plugin_description, plugin_maturity from

information_schema.plugins where plugin_type = 'DAEMON';

will generate the following file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Created by CONNECT Version 1.01.0008 August 18, 2013 -->

<TABLE border="1" cellpadding="5">

 <TR bgcolor="yellow">

 <TH>handler</TH>

 <TH>version</TH>

 <TH>author</TH>

 <TH>description</TH>

 <TH>maturity</TH>

 </TR>

 <TR>

 <TD>Maria</TD>

 <TD>1.5</TD>

 <TD>Monty Program Ab</TD>

 <TD>Compatibility aliases for the Aria engine</TD>

 <TD>Gamma</TD>

 </TR>

</TABLE>

This file can be used to display the table on a web browser (encoding should be ISO-8859-x)

handler version author description maturity

Maria 1.5 Monty Program Ab Compatibility aliases for the Aria engine Gamma

Note: The XML document encoding is generally specified in the XML header node, and can be different

from the DATA_CHARSET, which is always UTF-8 for XML tables. Therefore the table

DATA_CHARSET character set should be unspecified, or specified as UTF8. The Encoding

specification is useful only for new XML files and ignored for existing files having their encoding already

specified in the header node.

JSON Table Type
JSON (JavaScript Object Notation) is a lightweight data-interchange format widely used on the Internet.

Many applications, generally written in JavaScript or PHP use and produce JSON data, which are

exchanged as files of different physical format.

- 53 -

It is also possible to query, create or update such information in a database like manner. MongoDB does

it using a JavaScript like language. PostgreSQL includes this facility by using a specific data type and

related functions alike dynamic columns.

The CONNECT engine adds this facility to MariaDB by supporting tables based on JSON data files.

This is done like for XML tables by creating tables describing what should be retrieved from the file and

how it should be processed.

Let us start from the file “biblio3.json” that is the JSON equivalent of the XML Xsample file we have

described in the XML table chapter:

[

 {

 "ISBN": "9782212090819",

 "LANG": "fr",

 "SUBJECT": "applications",

 "AUTHOR": [

 {

 "FIRSTNAME": "Jean-Christophe",

 "LASTNAME": "Bernadac"

 },

 {

 "FIRSTNAME": "François",

 "LASTNAME": "Knab"

 }

],

 "TITLE": "Construire une application XML",

 "PUBLISHER": {

 "NAME": "Eyrolles",

 "PLACE": "Paris"

 },

 "DATEPUB": 1999

 },

 {

 "ISBN": "9782840825685",

 "LANG": "fr",

 "SUBJECT": "applications",

 "AUTHOR": [

 {

 "FIRSTNAME": "William J.",

 "LASTNAME": "Pardi"

 }

],

 "TITLE": "XML en Action",

 "TRANSLATED": {

 "PREFIX": "adapté de l'anglais par",

 "TRANSLATOR": {

 "FIRSTNAME": "James",

 "LASTNAME": "Guerin"

 }

 },

 "PUBLISHER": {

 "NAME": "Microsoft Press",

 "PLACE": "Paris"

 },

 "DATEPUB": 1999

- 54 -

 }

]

This file contains the different items existing in JSON.

Arrays: They are enclosed in square brackets and contain a list of comma separated values.

Objects: They are enclosed in curly brackets. They contain a comma separated list of pairs, each pair

composed of a key name between double quotes, followed by a ‘:’ character and followed by a value.

Values: Values can be an array or an object. They also can be a string between double quote, an integer

or float number, a Boolean value or a null value.

The simplest way for CONNECT to locate a table in such a file is by an array containing a list of objects.

Each array value will be a table row and each pair of the row objects will represent a column, the key

being the column name and the value the column value.

A first try to create a table on this file will be to take the outer array as the table:

create table jsample (

ISBN char(15),

LANG char(2),

SUBJECT char(32),

AUTHOR char(128),

TITLE char(32),

TRANSLATED char(80),

PUBLISHER char(20),

DATEPUB int(4))

engine=CONNECT table_type=JSON

File_name='biblio3.json';

If we execute the query:

select isbn, author, title, publisher from jsample;

We get the result:

isbn author title publisher

9782212090819 Jean-Christophe

Bernadac

Construire une application

XML

Eyrolles Paris

9782840825685 William J. Pardi XML en Action Microsoft Press

Pari

Note that by default, column values that are objects have been set to the concatenation of all the string

values of the object separated by a blank. When a column value is an array, only the first item of the

array is retrieved.

However, things are generally more complicated. If JSON files do not contain attributes (although object

pairs are like attributes) they contain a new item, ARRAYS. We have seen that they can be used like XML

multiple nodes, here to specify several authors, but they are more general because they can contain

objects of different types, even it may not be advisable to do so.

This is why CONNECT enables to specify in the column FIELD_FORMAT option a “JPATH” that is used

to described exactly where are the items to display and how to handles arrays.

Here is an example of a new table that can be created on the same file, allowing choosing the column

names, to get some sub-objects and to specify how to handle the author array

create table jsampall (

ISBN char(15),

- 55 -

Language char(2) field_format='LANG',

Subject char(32) field_format='SUBJECT',

Author char(128) field_format='AUTHOR.[" and "]',

Title char(32) field_format='TITLE',

Translation char(32) field_format='TRANSLATOR.PREFIX',

Translator char(80) field_format='TRANSLATOR',

Publisher char(20) field_format='PUBLISHER.NAME',

Location char(16) field_format='PUBLISHER.PLACE',

Year int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON File_name='biblio3.json';

Given the query:

select title, author, publisher, location from jsampall;

The result is:

title author publisher location

Construire une application XML Jean-Christophe Bernadac and François

Knab

Eyrolles Paris

XML en Action William J. Pardi Microsoft Press Paris

Here is another example showing that one can choose what to extract from the file and how to “expand”

an array, meaning to generate one row for each array value:

create table jsampex (

ISBN char(15),

Title char(32) field_format='TITLE',

AuthorFN char(128) field_format='AUTHOR[*].FIRSTNAME',

AuthorLN char(128) field_format='AUTHOR[*].LASTNAME',

Year int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON File_name='biblio3.json';

It is displayed as:

ISBN Title AuthorFN AuthorLN Year

9782212090819 Construire une application XML Jean-Christophe Bernadac 1999

9782212090819 Construire une application XML François Knab 1999

9782840825685 XML en Action William J. Pardi 1999

The Jpath Specification

Caution: In this version of CONNECT, the Jpath specification has changed to be the one of the native

JSON functions and more compatible with what is generally used. It is close to the standard definition

and compatible to what MongoDB and other products do. The ‘:’ separator is replaced by ‘.’. Position in

array is accepted MongoDB style with no square brackets. Array specification specific to CONNECT

are still accepted but [*] is used for expanding and [x] for multiply. However, tables created with the

previous syntax can still be used by adding SEP_CHAR=’:’ (can be done with ALTER TABLE).

It is the description of the path to follow to reach the required item. Each step is the key name (case

sensitive) of the pair when crossing an object, and the position number of the value when crossing an

array. Key specifications are separated by a ‘.’ character.

For instance, in the above file, the last name of the second author of a book is reached by:

$.AUTHOR[1].LASTNAME // standard style

$AUTHOR.1.LASTNAME // MongoDB style

- 56 -

AUTHOR:[1]:LASTNAME // old style when SEP_CHAR=':'

The ‘$’ or “$.” prefix specifies the root of the path and can be omitted with CONNECT.

The array specification can also indicate how it must be processed:

Specification Array Type Limit Description

[n] or n16 All N.A. Take the nth value of the array.

[*] All Expand. Generate one row for each array value.

["string"] String Concatenate all values separated by the specified string.

[+] Numeric Make the sum of all the array non-null values.

[x] Numeric Make the product of all array non-null values.

[!] Numeric Make the average of all the array non-null values.

[>] or [<] All Return the greatest or least non-null value of the array.

[#] All N.A. Return the number of values in the array.

[] All Expand if under an expanded object. Otherwise Sum if

numeric, else concatenation separated by “, “.

 All N.A. If an array, expand it if under an expanded object or take the

first value of it.

Note 1: When the LIMIT restriction is applicable, only the first m array items are used, m being the value

of the LIMIT option (to be specified in OPTION_LIST). The LIMIT default value is 10.

Note 2: An alternative way to indicate what is to be expanded – useful in particular with discovery -- is

to use the EXPAND option in the option list, for instance:

OPTION_LIST='Expand=AUTHOR'

AUTHOR is here the key of the pair that has the array as value (case sensitive). Expand is limited to only

one branch (all expanded arrays must be under the same object)

Let us take as an example the file expense.json shown in Appendix A.

The table jexpall expands all under and including the week array:

create table jexpall (

WHO char(12),

WEEK int(2) field_format='$.WEEK[*].NUMBER',

WHAT char(32) field_format='$.WEEK[*].EXPENSE[*].WHAT',

AMOUNT double(8,2) field_format='$.WEEK[*].EXPENSE[*].AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

WHO WEEK WHAT AMOUNT

Joe 3 Beer 18.00

Joe 3 Food 12.00

Joe 3 Food 19.00

Joe 3 Car 20.00

Joe 4 Beer 19.00

Joe 4 Beer 16.00

Joe 4 Food 17.00

Joe 4 Food 17.00

16 The value n can be 0 based or 1 based depending on the BASE table option. The default is 0 to match

what is the current usage in the Json world but it can be set to 1 for tables created in old versions.

- 57 -

Joe 4 Beer 14.00

Joe 5 Beer 14.00

Joe 5 Food 12.00

Beth 3 Beer 16.00

Beth 4 Food 17.00

Beth 4 Beer 15.00

Beth 5 Food 12.00

Beth 5 Beer 20.00

Janet 3 Car 19.00

Janet 3 Food 18.00

Janet 3 Beer 18.00

Janet 4 Car 17.00

Janet 5 Beer 14.00

Janet 5 Car 12.00

Janet 5 Beer 19.00

Janet 5 Food 12.00

The table jexpw shows what was bought and the sum and average of amounts for each person and week:

create table jexpw (

WHO char(12) not null,

WEEK int(2) not null field_format='$.WEEK[*].NUMBER',

WHAT char(32) not null field_format='$.WEEK[].EXPENSE[", "].WHAT',

SUM double(8,2) not null field_format='$.WEEK[].EXPENSE[+].AMOUNT',

AVERAGE double(8,2) not null

field_format='$.WEEK[].EXPENSE[!].AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

WHO WEEK WHAT SUM AVERAGE

Joe 3 Beer, Food, Food, Car 69.00 17.25

Joe 4 Beer, Beer, Food, Food, Beer 83.00 16.60

Joe 5 Beer, Food 26.00 13.00

Beth 3 Beer 16.00 16.00

Beth 4 Food, Beer 32.00 16.00

Beth 5 Food, Beer 32.00 16.00

Janet 3 Car, Food, Beer 55.00 18.33

Janet 4 Car 17.00 17.00

Janet 5 Beer, Car, Beer, Food 57.00 14.25

Let us see what does the table jexpz:

create table jexpz (

WHO char(12) not null,

WEEKS char(12) not null field_format='WEEK[", "].NUMBER',

SUMS char(64) not null field_format='WEEK["+"].EXPENSE[+].AMOUNT',

SUM double(8,2) not null field_format='WEEK[+].EXPENSE[+].AMOUNT',

AVGS char(64) not null field_format='WEEK["+"].EXPENSE[!].AMOUNT',

SUMAVG double(8,2) not null field_format='WEEK[+].EXPENSE[!].AMOUNT',

AVGSUM double(8,2) not null field_format='WEEK[!].EXPENSE[+].AMOUNT',

AVERAGE double(8,2) not null

field_format='WEEK[!].EXPENSE[*].AMOUNT')

engine=CONNECT table_type=JSON File_name='expense.json';

- 58 -

WHO WEEKS SUMS SUM AVGS SUMAVG AVGSUM AVERAGE

Joe 3, 4, 5 69.00+83.00+26.00 178.00 17.25+16.60+13.00 46.85 59.33 16.18

Beth 3, 4, 5 16.00+32.00+32.00 80.00 16.00+16.00+16.00 48.00 26.67 16.00

Janet 3, 4, 5 55.00+17.00+57.00 129.00 18.33+17.00+14.25 49.58 43.00 16.12

For all persons:

Column 1 shows the person name.

Column 2 shows the weeks for which values are calculated.

Column 3 lists the sums of expenses for each week.

Column 4 calculates the sum of all expenses by person.

Column 5 shows the week’s expense averages.

Column 6 calculates the sum of these averages.

Column 7 calculates the average of the week’s sum of expenses.

Column 8 calculates the average expense by person.

It would be very difficult, if even possible, to obtain this result from table jexpall using an SQL query.

Handling of NULL Values

Json has a null explicit value that can be met in arrays or object key values. When regarding json as a

relational table, a column value can be null because the corresponding json item is explicitly null or

implicitly because the corresponding item is missing in an array or object. CONNECT does not make

any difference between explicit or implicit nulls.

However, it is possible to specify how nulls are handled and represented. This is done by setting the

string session variable connect_json_null. The default value of connect_json_null is “<null>”; it can be

changed, for instance, by:

SET connect_json_null='NULL';

This changes its representation when a column displays the text of an object or the concatenation of the

values of an array.

It is also possible to tell CONNECT to ignore nulls by:

SET connect_json_null=NULL;

When doing so, nulls do not appear in object text or array lists. However, this does not change the

behavior of array calculation not the result of array count.

Having Columns defined by Discovery

It is possible to let the MariaDB discovery process do the job of column specification. When columns

are not defined in the CREATE TABLE statement, CONNECT endeavors to analyze the JSON file and to

provide the column specifications. This is possible only for tables represented by an array of objects

because CONNECT retrieves the column names from the object pair keys and their definition from the

object pair values. For instance, the jsample table could be created saying:

create table jsample engine=connect table_type=JSON

file_name='biblio3.json';

Let’s check how it was specified using the SHOW CREATE TABLE statement:

CREATE TABLE `jsample` (

 `ISBN` char(13) NOT NULL,

 `LANG` char(2) NOT NULL,

 `SUBJECT` char(12) NOT NULL,

 `AUTHOR` varchar(256) DEFAULT NULL,

- 59 -

 `TITLE` char(30) NOT NULL,

 `TRANSLATED` varchar(256) DEFAULT NULL,

 `PUBLISHER` varchar(256) DEFAULT NULL,

 `DATEPUB` int(4) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='JSON'

`FILE_NAME`='biblio3.json';

It is equivalent except for the column sizes that have been calculated from the file as the maximum length

of the corresponding column when it was a normal value. For columns that are Json arrays or objects,

the column is specified as a VARCHAR string of length 256, supposedly big enough to contain the sub-

object’s concatenated values. Nullable is set to true if the column is null or missing in some rows or if

its JPATH contains arrays.

If a more complex definition is desired, you can ask CONNECT to analyse the JPATH up to a given

level using the LEVEL option in the option list. The level value is the number of sub-objects that are taken

in the JPATH. For instance:

create table jsampall2 engine=connect table_type=JSON

file_name='biblio3.json' option_list='level=1';

This will define the table as:

CREATE TABLE `jsampall2` (

 `ISBN` char(13) NOT NULL,

 `LANG` char(2) NOT NULL,

 `SUBJECT` char(12) NOT NULL,

 `AUTHOR_FIRSTNAME` char(15) NOT NULL `FIELD_FORMAT`='AUTHOR..FIRSTNAME',

 `AUTHOR_LASTNAME` char(8) NOT NULL `FIELD_FORMAT`='AUTHOR..LASTNAME',

 `TITLE` char(30) NOT NULL,

 `TRANSLATED_PREFIX` char(23) DEFAULT NULL `FIELD_FORMAT`='TRANSLATED.PREFIX',

 `TRANSLATED_TRANSLATOR` varchar(256) DEFAULT NULL

`FIELD_FORMAT`='TRANSLATED.TRANSLATOR',

 `PUBLISHER_NAME` char(15) NOT NULL `FIELD_FORMAT`='PUBLISHER.NAME',

 `PUBLISHER_PLACE` char(5) NOT NULL `FIELD_FORMAT`='PUBLISHER.PLACE',

 `DATEPUB` int(4) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='JSON' `FILE_NAME`='biblio3.json'

`OPTION_LIST`='level=1';

The problem is that CONNECT cannot guess what you want to do with arrays. Here the AUTHOR array

is left undefined, which means that only its first value will be retrieved unless you also had specified

“Expand=AUTHOR” in the option list. But of course, you can replace it by anything else.

 This method can be used as a quick way to make a “template” table definition that can later be edited to

make the desired definition. In particular, column names are constructed from all the object keys of their

path in order to have distinct column names. This can be manually edited to have the desired names,

provided their JPATH key names are not modified.

Level can also be given the value -1 to create only columns that are simple values (no array or object).

Note: Since version 1.6.4, CONNECT eliminates columns that are “void” or whose type cannot be

determined. For instance given the file sresto.json:

{"_id":1,"name":"Corner Social","cuisine":"American","grades":[{"grade":"A","score":6}]}

{"_id":2,"name":"La Nueva Clasica Antillana","cuisine":"Spanish","grades":[]}

Previously, when using discovery, creating the table by:

create table sjr0

engine=connect table_type=JSON file_name='sresto.json'

option_list='Pretty=0,Level=1' lrecl=128;

The table was previously created as:

- 60 -

CREATE TABLE `sjr0` (

 `_id` bigint(1) NOT NULL,

 `name` char(26) NOT NULL,

 `cuisine` char(8) NOT NULL,

 `grades` char(1) DEFAULT NULL,

 `grades_grade` char(1) DEFAULT NULL `FIELD_FORMAT`='$.grades[0].grade',

 `grades_score` bigint(1) DEFAULT NULL `FIELD_FORMAT`='$.grades[0].score'

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='JSON'

`FILE_NAME`='sresto.json' `OPTION_LIST`='Pretty=0,Level=1,Accept=1'

`LRECL`=128;

The column “grades” was added because of the void array in line 2. Now this column is skipped and

does not appear anymore (unless the option Accept=1 is added in the option list).

JSON Catalogue Tables

Another way to see JSON table column specifications is to use a catalogue table. For instance:

create table bibcol engine=connect table_type=JSON

file_name='biblio3.json' option_list='level=2' catfunc=columns;

select column_name, type_name type, column_size size, jpath from

bibcol;

This reply:

column_name type siz

e

jpath

ISBN CHAR 13

LANG CHAR 2

SUBJECT CHAR 12

AUTHOR_FIRSTNAME CHAR 15 AUTHOR..FIRSTNAME

AUTHOR_LASTNAME CHAR 8 AUTHOR..LASTNAME

TITLE CHAR 30

TRANSLATED_PREFIX CHAR 23 TRANSLATED.PREFIX

TRANSLATED_TRANSLATOR_FIRSTNAM

E

CHAR 5 TRANSLATED.TRANSLATOR.FIRSTNAM
E

TRANSLATED_TRANSLATOR_LASTNAME CHAR 6 TRANSLATED.TRANSLATOR.LASTNAME

PUBLISHER_NAME CHAR 15 PUBLISHER.NAME

PUBLISHER_PLACE CHAR 5 PUBLISHER.PLACE

DATEPUB INTEGE
R

4

All this is mostly useful when creating a table on a remote file that you cannot easily see.

Finding the table within a JSON file

Given the file “facebook.json”:

{

 "data": [

 {

 "id": "X999_Y999",

 "from": {

 "name": "Tom Brady", "id": "X12"

 },

 "message": "Looking forward to 2010!",

 "actions": [

 {

 "name": "Comment",

 "link": "http://www.facebook.com/X999/posts/Y999"

- 61 -

 },

 {

 "name": "Like",

 "link": "http://www.facebook.com/X999/posts/Y999"

 }

],

 "type": "status",

 "created_time": "2010-08-02T21:27:44+0000",

 "updated_time": "2010-08-02T21:27:44+0000"

 },

 {

 "id": "X998_Y998",

 "from": {

 "name": "Peyton Manning", "id": "X18"

 },

 "message": "Where's my contract?",

 "actions": [

 {

 "name": "Comment",

 "link": "http://www.facebook.com/X998/posts/Y998"

 },

 {

 "name": "Like",

 "link": "http://www.facebook.com/X998/posts/Y998"

 }

],

 "type": "status",

 "created_time": "2010-08-02T21:27:44+0000",

 "updated_time": "2010-08-02T21:27:44+0000"

 }

]

}

The table we want to analyze is represented by the array value of the “data” object. Here is how this is

specified in the CREATE TABLE statement:

create table jfacebook (

`ID` char(10) field_format='id',

`Name` char(32) field_format='from.name',

`MyID` char(16) field_format='from.id',

`Message` varchar(256) field_format='message',

`Action` char(16) field_format='actions..name',

`Link` varchar(256) field_format='actions..link',

`Type` char(16) field_format='type',

`Created` datetime date_format='YYYY-MM-DD\'T\'hh:mm:ss'

field_format='created_time',

`Updated` datetime date_format='YYYY-MM-DD\'T\'hh:mm:ss'

field_format='updated_time')

engine=connect table_type=JSON file_name='facebook.json'

option_list='Object=data,Expand=actions';

This is the OBJECT option that gives the Jpath of the table. Note also an alternate way to declare the array

to be expanded by the EXPAND option of the option_list.

Because some string values contain a date representation, the corresponding columns are declared as

datetime and the date format is specified for them.

The Jpath of the object option has the same syntax than the column Jpath but of course all array steps

must be specified using the n format.

- 62 -

Note: All this applies only to tables having PRETTY = 2 (see below).

JSON File Formats

The examples we have seen so far are files that, even they can be formatted in different ways (blanks,

tabs, carriage return and line feed are ignored when parsing them), respect the JSON syntax and are made

of only one item (Object or Array). Like for XML files, they are entirely parsed and a memory

representation is made used to process them. This implies that they are of reasonable size to avoid an out

of memory condition. Tables based on such files are recognized by the option Pretty=2 that we did not

specify above because this is the default.

An alternate format, which is the format of exported MongoDB files, is a file where each row is

physically stored in one file record. For instance:

{ "_id" : "01001", "city" : "AGAWAM", "loc" : [-72.622739, 42.070206], "pop" : 15338, "state" : "MA" }
{ "_id" : "01002", "city" : "CUSHMAN", "loc" : [-72.51564999999999, 42.377017], "pop" : 36963, "state" : "MA" }
{ "_id" : "01005", "city" : "BARRE", "loc" : [-72.1083540000001, 42.409698], "pop" : 4546, "state" : "MA" }
{ "_id" : "01007", "city" : "BELCHERTOWN", "loc" : [-72.4109530000001, 42.275103], "pop" : 10579, "state" : "MA" }
…
{ "_id" : "99929", "city" : "WRANGELL", "loc" : [-132.352918, 56.433524], "pop" : 2573, "state" : "AK" }
{ "_id" : "99950", "city" : "KETCHIKAN", "loc" : [-133.18479, 55.942471], "pop" : 422, "state" : "AK" }

The original file, “cities.json”, has 29352 records. To base a table on this file we must specify the option

Pretty=0 in the option list. For instance:

create table cities (

`_id` char(5) key,

`city` char(32),

`lat` double(12,6) field_format='loc.0',

`long` double(12,6) field_format='loc.1',

`pop` int(8),

`state` char(2) distrib='clustered')

engine=CONNECT table_type=JSON file_name='cities.json'

lrecl=128 option_list='pretty=0';

Note the use of n array specifications for the latitude and longitude columns.

When using this format, the table is processed by CONNECT like a DOS, CSV or FMT table. Rows are

retrieved and parsed by records and the table can be very large. Another advantage is that such a table

can be indexed, which can be of great value for very large tables. The “distrib” option of the “state”

column tells CONNECT to use block indexing when possible.

For such tables – as well as for pretty=1 ones – the record size must be specified using the LRECL option.

Be sure you don’t specify it too small as it is used to allocate the read/write buffers and the memory used

for parsing the rows. In doubt, be generous as it does not cost much in memory allocation.

Another format exists, noted by Pretty=1, which is similar to this one but has some additions to represent

a JSON array. A header and a trailer records are added containing the opening and closing square bracket,

and all records but the last are followed by a comma. It has the same advantages for reading and updating,

but inserting and deleting are executed in the PRETTY=2 other way.

Alternate Table Arrangement

We have seen that the most natural way to represent a table in a JSON file is to make it on an array of

objects. However, other possibilities exist. A table can be an array of arrays, a one column table can be

an array of values, or a one row table can be just one object or one value. One row tables are internally

handled by adding a one value array around them.

Let us see how to handle, for instance, a table that is an array of arrays. The file:

[

- 63 -

 [56, "Coucou", 500.00],
 [[2,0,1,4], "Hello World", 2.0316],
 ["1784", "John Doo", 32.4500],
 [1914, ["Nabucho","donosor"], 5.12],
 [7, "sept", [0.77,1.22,2.01]],
 [8, "huit", 13.0],
]

A table can be created on this file as:

create table xjson (

`a` int(6) field_format='1',

`b` char(32) field_format='2',

`c` double(10,4) field_format='3')

engine=connect table_type=JSON file_name='test.json'

option_list='Pretty=1,Jmode=1,Base=1' lrecl=128;

Columns are specified by their position in the row arrays. By default, this is 0 based but for this table the

base was set to 1 by the Base option of the option list. Another new option in the option list is Jmode=1.

It indicates what type of table this is. The Jmode values are:

0 An array of objects. This is the default.

1 An array of Array. Like this one.

2 An array of values.

When reading, this is not required as the type of the array items is specified for the columns; however, it

is required when inserting new rows so CONNECT knows what to insert. For instance:

insert into xjson values(25, 'Breakfast', 1.414);

After this, it is displayed as:

a b c

56 Coucou 500.0000

2 Hello World 2.0316

1784 John Doo 32.4500

1914 Nabucho 5.1200

7 sept 0.7700

8 huit 13.0000

25 Breakfast 1.4140

Unspecified array values are represented by their first element.

Getting and Setting JSON Representation of a Column

It is possible to retrieve and display a column contain as the full JSON string corresponding to it in the

JSON file. This is specified in the JPATH by a “*” where the object or array would be specified. For

instance:

create table jsample2 (

ISBN char(15),

Lng char(2) field_format='LANG',

json_Author char(255) field_format='AUTHOR.*',

Title char(32) field_format='TITLE',

Year int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON file_name='biblio3.json';

- 64 -

Now the query:

select json_Author from jsample2;

will return and display :

json_Author

[{"FIRSTNAME":"Jean-Christophe","LASTNAME":"Bernadac"},{"FIRSTNAME":"François","LASTNAME":"Knab"}]

[{"FIRSTNAME":"William J.","LASTNAME":"Pardi"}]

This also works on input, a column specified as so can be directly set to a JSON valid string.

This feature is of great value as we will see below.

CRUD Operations on JSON Tables

The SQL commands INSERT, UPDATE and DELETE are fully supported for JSON tables. For INSERT

and UPDATE, if the target values are simple values, there are no problems.

However, there are some issues when the added or modified values are objects or arrays.

Concerning objects, the same problems exist that we have already seen with the XML type. The added

or modified object will have the format described in the table definition, which can be different from the

one of the JSON file. Modifications should be done using a file specifying the full path of modified

objects.

New problems are raised when trying to modify the values of an array. Only updates can be done on the

original table. First of all, for the values of the array to be distinct values, all update operations concerning

array values must be done using a table expanding this array.

For instance, to modify the authors of the biblio.json based table, the jsampex table must be used. Doing

so, updating and deleting authors is possible using standard SQL commands. For example, to change the

first name of Knab from François to John:

update jsampex set authorfn = 'John' where authorln = 'Knab';

However, it would be wrong to do:

update jsampex set authorfn = 'John' where isbn = '9782212090819';

Because this would change the first name of both authors as they share the same ISBN.

Where things become more difficult is when trying to delete or insert an author of a book. Indeed, a

DELETE command will delete the whole book and an INSERT command will add a new complete row

instead of adding a new author in the same array. Here we are penalized by the SQL language that cannot

give us a way to specify this. Something like:

update jsampex add authorfn = 'Charles', authorln = 'Dickens'

where title = 'XML en Action';

However, this does not exist in SQL. Does this mean that it is impossible to do it? No, but it requires us

to use a table specified on the same file but adapted to this task.

One way to do it is to specify a table for which the authors are no more an expanded array. Supposing

we want to add an author to the “XML en Action” book, we will do it on a table containing just the

author(s) of that book, which is the second book of the table.

- 65 -

create table jauthor (

FIRSTNAME char(64),

LASTNAME char(64))

engine=CONNECT table_type=JSON File_name='biblio3.json'

option_list='Object=21.AUTHOR';

The command:

select * from jauthor;

replies:

FIRSTNAME LASTNAME

William J. Pardi

It is a standard JSON table that is an array of objects in which we can freely insert or delete rows.

insert into jauthor values('Charles','Dickens');

We can check that this was done correctly by:

select * from jsampex;

This will display:

ISBN Title AuthorFN AuthorLN Year

9782212090819 Construire une application XML Jean-Christophe Bernadac 1999

9782212090819 Construire une application XML John Knab 1999

9782840825685 XML en Action William J. Pardi 1999

9782840825685 XML en Action Charles Dickens 1999

Note: If this table were a big table with many books, it would be difficult to know what the order of a

specific book is in the table. This can be found by adding a special ROWID column in the table.

However, an alternate way to do it is by using direct JSON column representation as in the JSAMPLE2

table. This can be done by:

update jsample2 set json_Author =

'[{"FIRSTNAME":"William J.","LASTNAME":"Pardi"},

 {"FIRSTNAME":"Charles","LASTNAME":"Dickens"}]'

where isbn = '9782840825685';

Here, we didn’t have to find the index of the sub array to modify. However, this is not quite satisfying

because we had to manually write the whole JSON value to set to the json_Author column.

Therefore, we need specific functions to do so. They are introduced now.

- 66 -

JSON User Defined Functions

Although such functions written by other parties do exist17, CONNECT provides its own UDF’s that are

specifically adapted to the JSON table type and easily available because, being inside the CONNECT

library or DLL, they require no additional module to be loaded18.

In particular, MariaDB 10.2 and 10.3 feature native JSON functions. In some cases, it is possible that

these native functions can be used. However, mixing native and UDF JSON functions in the same query

often does not work because the way they recognize their arguments is different and might even cause a

server crash.

Here is the list of the CONNECT functions; more can be added if required.

Name Type Return Description

jsonvalue Function STRING Make a JSON value from its unique argument.

json_make_array Function STRING Make a JSON array containing its arguments.

json_array_add_values Functions STRING Adds to its first array argument all following arguments.

json_array_add Function STRING Adds to its first array argument its second arguments.

json_array_delete Function STRING Deletes the nth element of its first array argument.

json_make_object Function STRING Make a JSON object containing its arguments.

json_object_nonull Function STRING Make a JSON object containing its not null arguments.

json_object_key Function STRING Make a JSON object for key/value pairs.

json_object_add Function STRING Adds to its first object argument its second argument.

json_object_delete Function STRING Deletes the nth element of its first object argument.

json_object_list Function STRING Returns the list of object keys as an array.

json_object_values Function STRING Returns the list of object values as an array.

jsonset_grp_size Function INTEGER Sets the JsonGrpSize value and returns it.

jsonget_grp_size Function INTEGER Returns the JsonGrpSize value.

json_array_grp Aggregate STRING Makes JSON arrays from coming argument.

json_object_grp Aggregate STRING Makes JSON objects from coming arguments.

jsonlocate Function STRING Returns the JPATH to access one element.

json_locate_all Function STRING Returns the JPATH’s of all occurrences of an element.

jsoncontains Function INTEGER Returns 0 or 1 if an element is contained in the

document.

Jsoncontains_path Function INTEGER Returns 0 or 1 if a JPATH is contained in the document.

json_item_merge Function STRING Merges two arrays or two objects.

json_get_item Function STRING Access and returns a Json item by a JPATH key.

jsonget_string Function STRING Access and returns a string element by a JPATH key.

jsonget_int Function INTEGER Access and returns an integer element by a JPATH key.

jsonget_real Function REAL Access and returns a real element by a JPATH key.

json_set_item Function STRING Set item values located to paths.

json_insert_item Function STRING Insert item values located to paths.

json_update_item Function STRING Update item values located to paths.

json_file Function STRING Returns the contains of (Json) file.

jfile_make Function STRING Make a Json file from its Json item first argument.

json_serialize Function STRING Serializes the return of a “Jbin” function.

jbin_array Function STRING* Make a JSON array containing its arguments.

jbin_array_add_values Function STRING* Adds to its first array argument all following arguments.

17 See for instance:

https://mariadb.com/kb/en/mariadb/json-functions/

https://github.com/mysqludf/lib_mysqludf_json#readme

https://blogs.oracle.com/svetasmirnova/entry/json_udf_functions_0_4
18 See Appendix C to make these functions in a separate library module.

https://github.com/mysqludf/lib_mysqludf_json#readme
https://blogs.oracle.com/svetasmirnova/entry/json_udf_functions_0_4

- 67 -

Name Type Return Description

jbin_array_add Function STRING* Adds to its first array argument its second arguments.

jbin_array_delete Function STRING* Deletes the nth element of its first array argument.

jbin_object Function STRING* Make a JSON object containing its arguments.

jbin_object_nonull Function STRING* Make a JSON object containing its not null arguments.

jbin_object_key Function STRING* Make a JSON object for key/value pairs.

jbin_object_add Function STRING* Adds to its first object argument its second argument.

jbin_object_delete Function STRING* Deletes the nth element of its first object argument.

jbin_object_list Function STRING* Returns the list of object keys as an array.

jbin_item_merge Function STRING* Merges two arrays or two objects..

jbin_get_item Function STRING* Access and returns a Json item by a JPATH key.

jbin_set_item Function STRING Set item values located to paths.

jbin_insert_item Function STRING Insert item values located to paths.

jbin_update_item Function STRING Update item values located to paths.

jbin_file Function STRING* Returns of a (Json) file contain.

String values are mapped to JSON strings. These strings are automatically escaped to conform to the

JSON syntax. The automatic escaping is bypassed when the value has an alias beginning with ‘json_’.

This is automatically the case when a JSON UDF argument is another JSON UDF whose name begins

with “json_” (not case sensitive). This is why all functions that do not return a Json item are not prefixed

by “json_”.

Numeric values are (big) integers, double floating-point values or decimal values. Decimal values are

character strings containing a numeric representation and are treated as strings. Floating point values

contain a decimal point and/or an exponent. Integers are written without decimal points.

To install these functions, execute the following commands19:

create function jsonvalue returns string soname 'ha_connect';

create function json_make_array returns string soname 'ha_connect';

create function json_array_add_values returns string soname 'ha_connect';

create function json_array_add returns string soname 'ha_connect';

create function json_array_delete returns string soname 'ha_connect';

create function json_make_object returns string soname 'ha_connect';

create function json_object_nonull returns string soname 'ha_connect';

create function json_object_key returns string soname 'ha_connect';

create function json_object_add returns string soname 'ha_connect';

create function json_object_delete returns string soname 'ha_connect';

create function json_object_list returns string soname 'ha_connect';

create function json_object_values returns string soname 'ha_connect';

create function jsonset_grp_size returns integer soname 'ha_connect';

create function jsonget_grp_size returns integer soname 'ha_connect';

create aggregate function json_array_grp returns string soname 'ha_connect';

create aggregate function json_object_grp returns string soname

'ha_connect';

create function jsonlocate returns string soname 'ha_connect';

create function json_locate_all returns string soname 'ha_connect';

create function jsoncontains returns integer soname 'ha_connect';

create function jsoncontains_path returns integer soname 'ha_connect';

create function json_item_merge returns string soname 'ha_connect';

create function json_get_item returns string soname 'ha_connect';

create function jsonget_string returns string soname 'ha_connect';

create function jsonget_int returns integer soname 'ha_connect';

create function jsonget_real returns real soname 'ha_connect';

create function json_set_item returns string soname 'ha_connect';

create function json_insert_item returns string soname 'ha_connect';

create function json_update_item returns string soname 'ha_connect';

create function json_file returns string soname 'ha_connect';

19 This works on Windows only. On Linux, the module name must be specified as ‘ha_connect.so’.

- 68 -

create function jfile_make returns string soname 'ha_connect';

create function json_serialize returns string soname 'ha_connect';

create function jbin_array returns string soname 'ha_connect';

create function jbin_array_add_values returns string soname 'ha_connect';

create function jbin_array_add returns string soname 'ha_connect';

create function jbin_array_delete returns string soname 'ha_connect';

create function jbin_object returns string soname 'ha_connect';

create function jbin_object_nonull returns string soname 'ha_connect';

create function jbin_object_key returns string soname 'ha_connect';

create function jbin_object_add returns string soname 'ha_connect';

create function jbin_object_delete returns string soname 'ha_connect';

create function jbin_object_list returns string soname 'ha_connect';

create function jbin_item_merge returns string soname 'ha_connect';

create function jbin_get_item returns string soname 'ha_connect';

create function jbin_set_item returns string soname 'ha_connect';

create function jbin_insert_item returns string soname 'ha_connect';

create function jbin_update_item returns string soname 'ha_connect';

create function jbin_file returns string soname 'ha_connect';

Note: In this document, json function names are often written with leading upper-case letters for clarity.

It is possible to do so in SQL queries because function names are case insensitive. However, when

creating or dropping them, their names must be in lower case like they are in the library module.

JsonValue(val):
Returns a JSON value as a string, for instance:

select JsonValue(3.1416);

JsonValue(3.1416)

3.141600

Json_Make_Array([val1[, …, valn]]):
This function was named “Json_Array” in previous versions of CONNECT. It was renamed because

MariaDB 10.2 features native JSON functions including a “Json_Array” function. The native function

does almost the same than the UDF one but does not accept CONNECT specific arguments such as the

result from JBIN functions.

Json_Make_Array returns a string denoting a JSON array with all its arguments as members. For

example:

select Json_Make_Array(56, 3.1416, 'My name is "Foo"', NULL);

Json_Make_Array(56, 3.1416, 'My name is "Foo"', NULL)

[56,3.141600,"My name is \"Foo\"",null]

Note: The argument list can be void. If so a void array is returned.

Json_Array_Add_Values(json_doc[, val_list]):
The first argument must be a JSON array string. Then all other arguments are added as members of this

array. For example:

select Json_Array_Add_Values(Json_Make_Array(56, 3.1416, 'machin',

NULL), 'One more', 'Two more') Array;

Array

[56,3.141600,"machin",null,"One more","Two more"]

- 69 -

Json_Array_Add(json_doc, val_list, [arg3], [arg4] …):
The first argument must be a JSON array. The second argument is added as member of this array. For

example:

select

Json_Array_Add(Json_Make_Array(56,3.1416,'machin',NULL),

'One more') Array;

Array

[56,3.141600,"machin",null,"One more"]

Note: The first array is not escaped, its (alias) name beginning with ‘json_’.

Now we can see how adding an author to the JSAMPLE2 table can alternatively be done:

update jsample2 set json_author = json_array_add(json_author,

json_make_object('Charles' FIRSTNAME, 'Dickens' LASTNAME))

where isbn = '9782840825685';

Note: Calling a column returning JSON a name prefixed by json_ (like json_author here) is good practice

and remove the need to give it an alias to prevent escaping when used as an argument.

Additional arguments:

If a third integer argument is given, it specifies the position (zero based) of the added value:

select Json_Array_Add('[5,3,8,7,9]' json_, 4, 2) Array;

Array

[5,3,4,8,7,9]

If a string argument is added, it specifies the Json path to the array to be modified. For instance:

select Json_Array_Add('{"a":1,"b":2,"c":[3,4]}' json_, 5, 1, 'c');

Json_Array_Add('{"a":1,"b":2,"c":[3, 4]}' json_, 5, 1, 'c')

{"a":1,"b":2,"c":[3,5,4]}

Json_Array_Delete(json_doc, index, [arg3] …):
The first argument should be a JSON array. The second argument is an integer indicating the rank (0

based conforming to general json usage) of the element to delete. For example:

select Json_Array_Delete(Json_Make_Array(56,3.1416,'foo',NULL),1)

Array;

Array

[56,"foo",null]

Now we can see how to delete the second author from the JSAMPLE2 table:

update jsample2 set json_author =

json_array_delete(json_author, 1) where isbn =

'9782840825685';

A Json path can be specified as a third string argument. It enables to specify to which item of the json

document the deleting is applied.

- 70 -

Json_Make_Object([val1[, …, valn]]):
This function was named “Json_Object” in previous versions of CONNECT. It was renamed because

MariaDB 10.2 features native JSON functions including a “Json_Object” function. The native function

does what the UDF Json_Object_Key does.

Json_Make_Object returns a string denoting a JSON object. For instance:

select Json_Make_Object(56, 3.1416, 'machin', NULL);

The object is filled with pairs corresponding to the given arguments. The key of each pair is made from

the argument (default or specified) alias.

Json_Make_Object(56, 3.1416, 'machin', NULL)

{"56":56,"3.1416":3.141600,"machin":"machin","NULL":null}

When needed, specify the keys by giving an alias to the arguments:

select Json_Make_Object(56 qty,3.1416 price,'machin' truc, NULL

garanty);

Json_Make_Object(56 qty,3.1416 price,'machin' truc, NULL garanty)

{"qty":56,"price":3.141600,"truc":"machin","garanty":null}

If the alias is prefixed by ‘json_’ (to prevent escaping) the key name is stripped from that prefix.

This function is chiefly useful when entering values retrieved from a table, the key being by default the

column name:

select Json_Make_Object(matricule, nom, titre, salaire) from

connect.employe where nom = 'PANTIER';

Json_Make_Object(matricule, nom, titre, salaire)

{"matricule":40567,"nom":"PANTIER","titre":"DIRECTEUR","salaire":14000.000000}

Json_Object_Nonull([val1 [, …, valn]])
This function works like Json_Make_Object but “null” arguments are ignored and not inserted in the

object.

Arguments are regarded as “null” if they are JSON null values, void arrays or objects, or arrays or objects

containing only null members.

It is mainly used to avoid constructing useless null items when converting tables (see later).

Json_Object_Key([key1, val1 [, …, keyn, valn]])
Return a string denoting a JSON object. For instance:

select Json_Object_Key('qty', 56, 'price', 3.1416, 'truc', 'machin',

'garanty', NULL);

The object is filled with pairs made from each key/value arguments.

Json_Object_Key('qty', 56, 'price', 3.1416, 'truc', 'machin', 'garanty', NULL)

{"qty":56,"price":3.141600,"truc":"machin","garanty":null}

Json_Object_Add(json_doc, pair, [path] …):
The first argument must be a JSON object. The second argument is added as a pair to this object. For

example:

- 71 -

select Json_Object_Add('{"item":"T-shirt","qty":27,"price":24.99}'

json_old,'blue' color) newobj;

newobj

{"item":"T-shirt","qty":27,"price":24.990000,"color":"blue"}

Note: If the specified key already exists in the object, its value is replaced by the new one.

Third string argument is a Json path to the target object within the document.

Json_Object_Delete(json_doc, key, [path] …):
The first argument must be a JSON object. The second argument is the key of the pair to delete. For

example:

select Json_Object_Delete('{"item":"T-shirt","qty":27,"price":24.99}'

json_old, 'qty') newobj;

newobj

{"item":"T-shirt","price":24.99}

Third string argument can be a Json path to the object to be the target of deletion.

Json_Object_List(json_object):
The first argument must be a JSON object. This function returns an array containing the list of all keys

existing in the object. For example:

select Json_Object_List(Json_Make_Object(56 qty,3.1416 price,'machin'

truc, NULL garanty)) "Key List";

Key List

["qty","price","truc","garanty"]

Json_Object_Values(json_object):
The first argument must be a JSON object. This function returns an array containing the list of all values

existing in the object. For example:

select Json_Object_Values('{"One":1,"Two":2,"Three":3}')

"Value List";

Value List

[1,2,3]

Note: This function is new and may not exists in older versions.

JsonSet_Grp_Size(val)
This function is used to set the JsonGrpSize value. This value is used by the following aggregate

functions as a ceiling value of the number of items in each group. It returns the JsonGrpSize value that

can be its default value when passed 0 as argument.

JsonGet_Grp_Size(val)
This function returns the JsonGrpSize value.

Json_Array_Grp(arg)
This is an aggregate function that makes an array filled from values coming from the rows retrieved by

a query. Let us suppose we have the pet table:

- 72 -

name race number

John dog 2

Bill cat 1

Mary dog 1

Mary cat 1

Lisbeth rabbit 2

Kevin cat 2

Kevin bird 6

Donald dog 1

Donald fish 3

The query:

select name, json_array_grp(race) from pet group by name;

will return:

name json_array_grp(race)

Bill ["cat"]

Donald ["dog","fish"]

John ["dog"]

Kevin ["cat","bird"]

Lisbeth ["rabbit"]

Mary ["dog","cat"]

One problem with the JSON aggregate functions is that they construct their result in memory and cannot

know the needed amount of storage, not knowing the number of rows of the used table.

Therefore, the number of values for each group is limited. This limit is the value of JsonGrpSize whose

default value is 10 but can be set using the JsonSet_Grp_Size function20. Nevertheless, working on a

larger table is possible, but only after setting JsonGrpSize to the ceiling of the number of rows per group

for the table. Try not to set it to a very large value to avoid memory exhaustion.

Json_Object_Grp(arg1,arg2)
This function works like Json_Array_Grp. It makes a JSON object filled with values passed from its first

argument. Values passed from the second argument will be the keys associated with the values.

This can be seen with the query:

select name, json_object_grp(number,race) from pet group by name;

This query returns:

name json_object_grp(number,race)

Bill {"cat":1}

Donald {"dog":1,"fish":3}

John {"dog":2}

Kevin {"cat":2,"bird":6}

20 When JsonGrpSize is set to 0, CONNECT uses the deprecated connect_json_grp_size session variable instead.

This can be temporarily used for existing applications written for older versions but works only is the CONNECT

engine is installed.

- 73 -

Lisbeth {"rabbit":2}

Mary {"dog":1,"cat":1}

JsonLocate(json_doc, item, [int], …):
The first argument must be a JSON tree. The second argument is the item to be located. The item to be

located can be a constant or a json item. Constant values must be equal in type and value to be found.

This is "shallow equality" – strings, integers and doubles won't match.

This function returns the json path to the located item or null if it is not found. For example:

select JsonLocate('{"AUTHORS":[{"FN":"Jules", "LN":"Verne"},

{"FN":"Jack", "LN":"London"}]}' json_, 'Jack') Path;

This query returns:

Path

$.AUTHORS[1].FN

The path syntax is the new one, the same used in JSON CONNECT tables.

By default, the path of the first occurrence of the item is returned. The third parameter can be used to

specify the occurrence whose path is to be returned. For instance:

select

JsonLocate('[45,28,[36,45],89]',45) first,

JsonLocate('[45,28,[36,45],89]',45,2) second,

JsonLocate('[45,28,[36,45],89]',45.0) `wrong type`,

JsonLocate('[45,28,[36,45],89]','[36,45]' json_) json;

first second wrong type json

$[0] $[2][1] <null> $[2]

For string items, the comparison is case sensitive by default. However, it is possible to specify a string

to be compared case insensitively by giving it an alias beginning by “ci”:

select JsonLocate('{"AUTHORS":[{"FN":"Jules", "LN":"Verne"},

{"FN":"Jack", "LN":"London"}]}' json_, 'VERNE' ci) Path;

Path

$.AUTHORS[0].LN

Json_Locate_All(json_doc, item, [depth]):
The first argument must be a JSON item. The second argument is the item to be located. This function

returns the paths to all locations of the item as an array of strings. For example:

select Json_Locate_All('[[45,28],[[36,45],89]]',45);

This query returns:

All paths

["$[0][0]","$[1][0][1]"]

The returned array can be applied other functions. For instance, to get the number of occurrences of an

item in a json tree, you can do:

- 74 -

select

JsonGet_Int(Json_Locate_All('[[45,28],[[36,45],89]]',45),

'$[#]') "Nb of occurs";

The displayed result:

Nb of occurs

2

If specified, the third integer argument set the depth to search in the document. This means the maximum

items in the paths. This value defaults to 10 but can be increased for complex documents or reduced to

set the maximum wanted depth of the returned paths.

JsonContains(json_doc, item [, int])
This function can be used to check whether an item is contained in a document. Its arguments are the

same than the ones of the JsonLocate function; only the return value changes. The integer returned value

is 1 is the item is contained in the document or 0 otherwise.

JsonContains_Path(json_doc, path)
This function can be used to check whether a Json path is contained in the document. The integer returned

value is 1 is the path is contained in the document or 0 otherwise.

Json_Item_Merge(json_doc1, json_doc2)
This function merges two arrays or two objects. For arrays, this is done by adding to the first array all

the values of the second array. For instance:

select Json_Item_Merge(Json_Make_Array('a','b','c'),

Json_Make_Array('d','e','f')) as "Result";

The function returns:

Result

["a","b","c","d","e","f"]

For objects, the pairs of the second object are added to the first object if the key does not exist yet in it;

otherwise the pair of the first object is set with the value of the matching pair of the second object. For

instance:

select Json_Item_Merge(Json_Make_Object(1 "a", 2 "b", 3 "c"),

Json_Make_Object(4 "d",5 "b",6 "f")) as "Result";

The function returns:

Result

{"a":1,"b":5,"c":3,"d":4,"f":6}

Json_Get_Item(json_doc, path)
This function returns a subset of the json document passed as first argument. The second argument is the

json path of the item to be returned and should be one returning a json item (terminated by a ‘*’). If not,

the function will try to make it right but this is not fool proof. For instance:

select Json_Get_Item(Json_Make_Object('foo' as "first",

Json_Make_Array('a', 33) as "json_second"), 'second') as

"item";

- 75 -

The correct path should have been ‘second.*’ but in this simple case the function was able to make it

right. The returned item:

item

["a",33]

Note: The array is aliased “json_second” to indicate it is a json item and avoid escaping it. However, the

“json_” prefix is skipped when making the object and must not be added to the path.

{JsonGet_String | JsonGet_Int | JsonGet_Real}(json_doc, path, [prec])
The first argument should be a JSON item. If it is a string with no alias, it will be converted as a json

item. The second argument is the path of the item to be located in the first argument and returned,

eventually converted according to the used function. For example:

select

JsonGet_String('{"qty":7,"price":29.50,"garanty":null}','price') "String",

JsonGet_Int('{"qty":7,"price":29.50,"garanty":null}','price') "Int",

JsonGet_Real('{"qty":7,"price":29.50,"garanty":null}','price') "Real";

This query returns:

String Int Real

29.50 29 29.500000000000000

The function JsonGet_Real can be given a third argument to specify the number of decimal digits of the

returned value. For instance:

select

JsonGet_Real('{"qty":7,"price":29.50,"garanty":null}','price',4) "Real";

This will return:

Real

29.5000

The given path can specify all operators for arrays except the “expand” [*] operator. For instance:

select

JsonGet_Int(Json_Make_Array(45,28,36,45,89), '[4]') "Rank",

JsonGet_Int(Json_Make_Array(45,28,36,45,89), '[#]') "Number",

JsonGet_String(Json_Make_Array(45,28,36,45,89), '[","]') "Concat",

JsonGet_Int(Json_Make_Array(45,28,36,45,89), '[+]') "Sum",

JsonGet_Real(Json_Make_Array(45,28,36,45,89), '[!]', 2) "Avg";

The result:

Rank Number Concat Sum Avg

89 5 45,28,36,45,89 243 48.60

Json_{Set | Insert | Update}_Item(json_doc, [item, path [, val, path …]])
These functions insert or update data in a JSON document and return the result. The value/path pairs are

evaluated left to right. The document produced by evaluating one pair becomes the new value against

which the next pair is evaluated.

Json_Set_Item replaces existing values and adds non-existing values.

Json_Insert_Item inserts values without replacing existing values.

Json_Update_Item replaces only existing values.

http://dev.mysql.com/doc/refman/5.7/en/json-modification-functions.html#function_json-set
http://dev.mysql.com/doc/refman/5.7/en/json-modification-functions.html#function_json-insert
http://dev.mysql.com/doc/refman/5.7/en/json-modification-functions.html#function_json-replace

- 76 -

Example:

set @j = Json_Make_Array(1, 2, 3, Json_Object_Key('quatre', 4));

select Json_Set_Item(@j, 'foo', '$[1]', 5, '$[3].cinq') as "Set",

Json_Insert_Item(@j, 'foo', '$[1]', 5, '$[3].cinq') as "Insert",

Json_Update_Item(@j, 'foo', '$[1]', 5, '$[3].cinq') as "Update";

This query returns:

Set Insert Update

[1,"foo",3,{"quatre":4,"cinq":5}] [1,2,3,{"quatre":4,"cinq":5}] [1,"foo",3,{"quatre":4}]

Json_File(file_name, [arg2, [arg3]], …):
The first argument must be a file name. This function returns the text of the file that is supposed to be a

json file. If only one argument is specified, the file text is returned without being parsed. Up to two

additional arguments can be specified:

• A string argument is the path to the sub-item to be returned.

• An integer argument specifies the pretty format value of the file.

This function is chiefly used to get the json item argument of other json functions from a json file. For

instance, supposing the file tb.json is:

{ "_id" : 5, "type" : "food", "ratings" : [5, 8, 9] }

{ "_id" : 6, "type" : "car", "ratings" : [5, 9] }

Extracting a value from it can be done with a query such as:

select JsonGet_String(Json_File('tb.json', 0), '$[1].type')

"Type";

This query returns:

However, we’ll see that, most of the time, it is better to use Jbin_File or to directly specify the file name

in queries. In particular this function should not be used for queries that must modify the json item

because, even the modified json is returned the file itself would be unchanged.

Jfile_Make(json_doc, arg2, [arg3], …):
The first argument must be a json item21. Following arguments are a string file name and an integer pretty

value (defaulting to 2) in any order. This function makes a json file containing the first argument item.

The returned string value is the made file name. If not specified as argument, the file name can in some

cases be retrieved from the first argument; in such case the file itself is modified.

This function can be used to create or format of a json file. For instance supposing we want to format the

file tb.json, this can be done with the query:

select Jfile_Make('tb.json' jfile_, 2);

The tb.json file will be changed to:

21 If it is just a string, Jfile_Make will try its best to see if it is a json item or an input file name.

Type

car

- 77 -

[

 {

 "_id": 5,

 "type": "food",

 "ratings": [

 5,

 8,

 9

]

 },

 {

 "_id": 6,

 "type": "car",

 "ratings": [

 5,

 9

]

 }

]

The “JBIN” return type

Almost all the functions returning a json string – whose name begins with Json_ -- have a counterpart

whose name begins with Jbin_. This is as well for performance (speed and memory) as for a better control

of what the functions should do.

This is due to the way CONNECT UDF’s work internally. The Json functions, when receiving json

strings as parameters, parse them and construct a binary tree in memory. They work on this tree and

before returning; serialize this tree to return a new json string.

If the json document is big, this can be quite consuming in time and storage. It is all right when one

simple json function is called – it must be done anyway – but is a waste of time and memory when json

functions are used as parameters to other json functions.

To avoid multiple serializing and parsing, the Jbin functions should be used as parameters to other

functions. Indeed, they do not serialize the memory document tree, but return a structure allowing the

receiving function to have direct access to the memory tree. This saves the serialize-parse steps otherwise

needed to pass the argument and remove the need to reallocate the memory of the binary tree, which by

the way is 6 to 7 times the size of the json string. For instance:

select

Json_Make_Object(Jbin_Array_Add(Jbin_Array('a','b','c'), 'd')

as "Jbin_foo") as "Result";

This query returns:

Result

{"foo":["a","b","c","d"]}

Here the binary json tree allocated by Jbin_Array is completed by Jbin_Array_Add and

Json_Make_Object and serialized only once to make the final result string. It would be serialized and

parsed two more times if using “Json” functions.

Note that Jbin results are recognized as such because aliased beginning by “Jbin_”. This is why in

Json_Make_Object function the alias is specified a “Jbin_foo”.

- 78 -

What happens if not recognized as such? These functions are declared as returning a string and to take

care of this, the returned structure begins with a zero-terminated string. For instance,22:

select Jbin_Array('a','b','c');

This query replies:

Jbin_Array('a','b','c')

Binary Json array

Note: When testing, the tree returned by a “Jbin” function can be seen using the Json_Serialize function

whose unique parameter must be a “Jbin” result. For instance:

select Json_Serialize(Jbin_Array('a','b','c'));

This query returns:

Json_Serialize(Jbin_Array('a','b','c'))

["a","b","c"]

Note: For this simple example, this is equivalent to using the Json_Make_Array function.

Using a file as json UDF first argument

We have seen that many json UDFs can have an additional argument not yet described. This is in the

case where the json item argument was referring to a file. Then the additional integer argument is the

pretty value of the json file. It matters only when the first argument is just a file name (to make the UDF

understand this argument is a file name, it should be aliased with a name beginning with jfile_) or if the

function modifies the file, in which case it will be rewritten with this pretty format.

The json item is made by extracting from the file the required part. This can be the whole file but more

often only some of it. There are two ways to specify the sub-item of the file to be used:

1. Specifying it if the Json_File or Jbin_File arguments.

2. Specifying it in the receiving function (not possible for all functions)

It doesn’t make any difference when the Jbin_File is used but it does with Json_File. For instance:

select Jfile_Make('{"a":1, "b":[44, 55]}' json_, 'test.json');

select Json_Array_Add(Json_File('test.json', 'b'), 66);

The second query returns:

Json_Array_Add(Json_File('test.json', 'b'), 66)

[44,55,66]

It just returns the – modified -- subset returned by the Json_File function, while the query:

select Json_Array_Add(Json_File('test.json'), 66, 'b');

returns what was received from Json_File with the modification made on the subset.

22 Not all client programs are able to recognize zero terminated string. In particular the default MariaDB

client is prone to display some rubbish behind the returned string.

- 79 -

Json_Array_Add(Json_File('test.json'), 66, 'b')

{"a":1,"b":[44,55,66]}

Note that in both case the test.json file is not modified. This is because the Json_File function returns a

string representing all or part of the file text but no information about the file name. This is all right to

check what would be the effect of the modification to the file.

However, to have the file modified, use the Jbin_File function or directly give the file name. Jbin_File

returns a structure containing all these information, the file name, a pointer to the file parsed tree and

eventually a pointer to the subset when a path is given as a second argument:

select Json_Array_Add(Jbin_File('test.json', 'b'), 66);

This query returns:

Json_Array_Add(Jbin_File('test.json', 'b'), 66)

test.json

This time the file is modified. This can be checked with:

select Json_File('test.json', 3);

Json_File('test.json', 3)

{"a":1,"b":[44,55,66]}

The reason why the first argument is returned by such a query is because of tables such as:

create table tb (

n int key,

jfile_cols char(10) not null);

insert into tb values(1,'test.json');

In this table, the jfile_cols column just contains a file name. If we update it by:

update tb set jfile_cols = select

Json_Array_Add(Jbin_File('test.json', 'b'), 66)

where n = 1;

This is the test.json file that must be modified, not the jfile_cols column. This can be checked by:

select JsonGet_String(jfile_cols, '[1]:*') from tb;

JsonGet_String(jfile_cols, '[1]:*')

{"a":1,"b":[44,55,66]}

Note: It was an important facility to name the second column of the table beginning by “jfile_” so the

json functions knew it was a file name without obliging to specify an alias in the queries.

Using “Jbin” to control what the query execution does
This is applying, in particular, when acting on json files. We have seen that a file was not modified when

using the Json_File function as an argument to a modifying function because the modifying function just

received a copy of the json file. This is not true when using the Jbin_File function that does not serialize

the binary document and make it directly accessible. Also, as we have seen earlier, json functions that

modify their first file parameter modify the file and return the file name. This is done by directly

serializing the internal binary document as a file.

- 80 -

However, the “Jbin” counterpart of these functions does not serialize the binary document and thus does

not modify the json file. For example, let us compare these two queries:

/* First query */

select Json_Make_Object(Jbin_Object_Add(Jbin_File('bt2.json'),

4 as "d") as "Jbin_bt1") as "Result";

/* Second query */

select Json_Make_Object(Json_Object_Add(Jbin_File('bt2.json'),

4 as "d") as "Jfile_bt1") as "Result";

Both queries return:

Result

{"bt1":{"a":1,"b":2,"c":3,"d":4}}

In the first query Jbin_Object_Add does not serialize the document (no “Jbin” functions do) and

Json_Make_Object just returns a serialized modified tree. Consequently, the file bt2.json is not modified.

This query is all right to copy a modified version of the json file without modifying it.

However, in the second query Json_Object_Add does modify the json file and returns the file name. The

Json_Make_Object function receives this file name, read and parses the file, makes an object from it and

returns the serialized result. This modification can be done willingly but can be an unwanted side effect

of the query.

Therefore, using “Jbin” argument functions, in addition to being faster and using less memory, is also

safer when dealing with json files that should not be modified.

Using JSON as Dynamic Columns
The JSON NOSQL language has all the features to be used as an alternative to dynamic columns. For

instance, the MariaDB documentation gives as an example of dynamic columns:

create table assets (

 -> item_name varchar(32) primary key, /* A common attribute for all items */

 -> dynamic_cols blob /* Dynamic columns will be stored here */

 ->);

Query OK, 0 rows affected (0.05 sec)

INSERT INTO assets VALUES

 -> ('MariaDB T-shirt', COLUMN_CREATE('color', 'blue', 'size', 'XL'));

Query OK, 1 row affected (0.04 sec)

INSERT INTO assets VALUES

 -> ('Thinkpad Laptop', COLUMN_CREATE('color', 'black', 'price', 500));

Query OK, 1 row affected (0.00 sec)

SELECT item_name, COLUMN_GET(dynamic_cols, 'color' as char) AS color FROM assets;

+-----------------+-------+

| item_name | color |

+-----------------+-------+

| MariaDB T-shirt | blue |

| Thinkpad Laptop | black |

+-----------------+-------+

2 rows in set (0.09 sec)

/* Remove a column: */

UPDATE assets SET dynamic_cols=COLUMN_DELETE(dynamic_cols, "price")

 -> WHERE COLUMN_GET(dynamic_cols, 'color' as char)='black';

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

/* Add a column: */

UPDATE assets SET dynamic_cols=COLUMN_ADD(dynamic_cols, 'warranty', '3 years')

 -> WHERE item_name='Thinkpad Laptop';

Query OK, 1 row affected (0.00 sec)

- 81 -

Rows matched: 1 Changed: 1 Warnings: 0

/* You can also list all columns, or (starting from MariaDB 10.0.1)

 get them together with their values in JSON format: */

SELECT item_name, column_list(dynamic_cols) FROM assets;

+-----------------+---------------------------+

| item_name | column_list(dynamic_cols) |

+-----------------+---------------------------+

| MariaDB T-shirt | `size`,`color` |

| Thinkpad Laptop | `color`,`warranty` |

+-----------------+---------------------------+

2 rows in set (0.00 sec)

SELECT item_name, COLUMN_JSON(dynamic_cols) FROM assets;

+-----------------+--+

| item_name | COLUMN_JSON(dynamic_cols) |

+-----------------+--+

| MariaDB T-shirt | {"size":"XL","color":"blue"} |

| Thinkpad Laptop | {"color":"black","warranty":"3 years"} |

+-----------------+--+

2 rows in set (0.00 sec)

The same result can be obtained with json columns using the json UDF’s:

/* JSON equivalent */

create table jassets (

 -> item_name varchar(32) primary key, /* A common attribute for all items */

 -> json_cols varchar(512) /* Jason columns will be stored here */

 ->);

Query OK, 0 rows affected (0.04 sec)

INSERT INTO jassets VALUES

 -> ('MariaDB T-shirt', Json_Make_Object('blue' color, 'XL' size));

Query OK, 1 row affected (0.00 sec)

INSERT INTO jassets VALUES

 -> ('Thinkpad Laptop', Json_Make_Object('black' color, 500 price));

Query OK, 1 row affected (0.00 sec)

SELECT item_name, JsonGet_String(json_cols, 'color') AS color FROM jassets;

+-----------------+-------+

| item_name | color |

+-----------------+-------+

| MariaDB T-shirt | blue |

| Thinkpad Laptop | black |

+-----------------+-------+

2 rows in set (0.00 sec)

/* Remove a column: */

UPDATE jassets SET json_cols=Json_Object_Delete(json_cols, 'price')

 -> WHERE JsonGet_String(json_cols, 'color')='black';

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

/* Add a column */

UPDATE jassets SET json_cols=Json_Object_Add(json_cols, '3 years' warranty)

 -> WHERE item_name='Thinkpad Laptop';

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

/* You can also list all columns, or get them together with their values in JSON

format: */

SELECT item_name, Json_Object_List(json_cols) FROM jassets;

+-----------------+-----------------------------+

| item_name | Json_Object_List(json_cols) |

+-----------------+-----------------------------+

| MariaDB T-shirt | ["color","size"] |

| Thinkpad Laptop | ["color","warranty"] |

+-----------------+-----------------------------+

2 rows in set (0.00 sec)

SELECT item_name, json_cols FROM jassets;

+-----------------+--+

| item_name | json_cols |

+-----------------+--+

| MariaDB T-shirt | {"color":"blue","size":"XL"} |

- 82 -

| Thinkpad Laptop | {"color":"black","warranty":"3 years"} |

+-----------------+--+

2 rows in set (0.00 sec)

However, using JSON brings features not exiting in dynamic columns:

• Use of a language used by many implementation and developers.

• Full support of arrays, currently missing from dynamic columns.

• Access of subpart of json by JPATH that can include calculations on arrays.

• Possible references to json files.

With more experience, additional UDF’s can be easily written to support new needs.

Converting Tables to JSON

The JSON UDF’s and the direct Jpath “*” facility are powerful tools to convert table and files to the

JSON format. For instance, the file biblio3.json we used previously can be obtained by converting the

xsample.xml file. This can be done like this:

create table xj1 (row varchar(500) field_format='*')

engine=connect table_type=JSON file_name='biblio3.json'

option_list='jmode=2';

And then:

insert into xj1

select json_object_nonull(ISBN, language LANG, SUBJECT,

json_array_grp(json_make_object(authorfn FIRSTNAME, authorln

LASTNAME)) json_AUTHOR, TITLE,

json_make_object(translated PREFIX, json_make_object(tranfn

FIRSTNAME, tranln LASTNAME) json_TRANSLATOR) json_TRANSLATED,

json_make_object(publisher NAME, location PLACE)

json_PUBLISHER, date DATEPUB) from xsampall2 group by isbn;

The xj1 table rows will directly receive the Json object made by the SELECT statement used in the INSERT

statement and the table file will be made as shown (xj1 is pretty=2 by default). Its mode is Jmode=2

because the values inserted are strings even if they denote json objects.

Another way to do this is to create a table describing the file format we want before the biblio3.json file

existed:

create table jsampall3 (

ISBN char(15),

LANGUAGE char(2) field_format='LANG',

SUBJECT char(32),

AUTHORFN char(128) field_format='AUTHOR:[X]:FIRSTNAME',

AUTHORLN char(128) field_format='AUTHOR:[X]:LASTNAME',

TITLE char(32),

TRANSLATED char(32) field_format='TRANSLATOR:PREFIX',

TRANSLATORFN char(128) field_format='TRANSLATOR:FIRSTNAME',

TRANSLATORLN char(128) field_format='TRANSLATOR:LASTNAME',

PUBLISHER char(20) field_format='PUBLISHER:NAME',

LOCATION char(20) field_format='PUBLISHER:PLACE',

DATE int(4) field_format='DATEPUB')

engine=CONNECT table_type=JSON file_name='biblio3.json';

and to populate it by:

insert into jsampall3 select * from xsampall;

- 83 -

This is a simpler method. However, the issue is that this method cannot handle the multiple column

values. This is why we inserted from xsampall not from xsampall2. How can we add the missing multiple

authors in this table? Here again we must create a utility table able to handle JSON strings.

create table xj2 (ISBN char(15), author varchar(150)

field_format='AUTHOR:*') engine=connect table_type=JSON

file_name='biblio3.json' option_list='jmode=1';

update xj2 set author =

(select json_array_grp(json_make_object(authorfn FIRSTNAME,

authorln LASTNAME)) from xsampall2 where isbn = xj2.isbn);

Voilà !

Converting json files

We have seen that json files can be formatted differently depending on the pretty option. In particular,

big data files should be formatted with pretty equal to 0 when used by a CONNECT json table. The best

and simplest way to convert a file from one format to another is to use the Jfile_Make function. Indeed,

this function makes a file of specified format using the syntax:

Jfile_Make(json_document, [file_name], [pretty]);

The file name is optional when the json document comes from a Jbin_File function because the returned

structure makes it available. For instance, to convert back the json file tb.json to pretty= 0, this can be

simply done by:

select Jfile_Make(Jbin_File('tb.json'), 0);

Performance Consideration

MySQL and PostgreSQL have a JSON data type that is not just text but an internal encoding of JSON

data. This is to save parsing time when executing JSON functions. Of course, the parse must be done

anyway when creating the data and serializing must be done to output the result.

CONNECT directly works on character strings impersonating JSON values with the need of parsing

them all the time but with the advantage of working easily on external data. Generally, this is not too

penalizing because JSON data are often of some or reasonable size. The only case where it can be a

serious problem is when working on a big JSON file.

Then, the file should be formatted or converted to pretty=0. Also, it should not be used directly by JSON

UDFs because they do parse the whole file even when only a subset is used. Instead it should be use by

a JSON table created on it. Indeed, JSON tables do not parse the whole document but just the item

corresponding to the row they are working on. In addition, indexing can be used by the table as explained

previously in this document.

Generally speaking, the maximum flexibility offered by CONNECT is by using JSON tables and JSON

UDFs together. Some things are better handled by tables, other by UDFs. The tools are there but it is up

to you to discover the best way to resolve your problems.

Specifying a JSON table Encoding

An important feature of JSON is that strings should be coded in UNICODE. As a matter of facts, all

examples we have found on the Internet seemed to be just ASCII. This because UNICODE is generally

encoded in JSON files using UTF8 or UTF16 or UTF32.

To specify the required encoding, just use the DATA_CHARSET CONNECT option.

- 84 -

Retrieving JSON data from MongoDB

Classified as a NoSQL database program, MongoDB uses JSON-like documents (BSON) grouped in

collections. The simplest, and only one in previous versions of CONNECT, way to access MongoDB

data was to export a collection to a JSON file. This produces a file having the pretty=0 format. View as

SQL, a collection is a table and documents are table rows.

Since CONNECT version 1.6, it is now possible to directly access MongoDB collections. This is the

purpose of the MONGO table type described later. However, JSON tables can also do it in a somewhat

different way23.

It is achieved by specifying the MongoDB connection URI while creating the table. For instance:

create or replace table jinvent (

_id char(24) not null,

item char(12) not null,

instock varchar(300) not null field_format='instock.*')

engine=connect table_type=JSON tabname='inventory' lrecl=512

connection='mongodb://localhost:27017';

In this statement, the file_name option was replaced by the connection option. It is the URI enabling to

retrieve data from a local or remote MongoDB server. The tabname option is the name of the MongoDB

collection that will be used and the dbname option could have been used to indicate the database

containing the collection (it defaults to the current database).

The way it works is that the documents retrieved from MongoDB are serialized and CONNECT use them

as if they were read from a file. This implies serializing by MongoDB and parsing by CONNECT and is

not the best performance wise. CONNECT tries its best to reduce the data transfer when a query contains

a reduced column list and/or a where clause. This way makes all the possibilities of the JSON table type

available, such as calculated arrays.

However, to work on big JSON collations, using the MONGO table type is the preferred way.

Note: JSON tables using the MongoDB access accept the specific MONGO options colist, filter, driver

and pipe. They are described in the MONGO table chapter.

INI Table Type
The INI type is the one of “configure” or “initializing” files often met on Windows machines. For

instance, let us suppose you have a contact file contact.ini such as:

[BER]

name=Bertrand

forename=Olivier

address=21 rue Ferdinand Buisson

city=Issy-les-Mlx

zipcode=92130

tel=09.54.36.29.60

cell=06.70.06.04.16

[WEL]

name=Schmitt

forename=Bernard

hired=19/02/1985

address=64 tiergarten strasse

city=Berlin

zipcode=95013

tel=03.43.377.360

23 Providing the MONGO support is installed as described for MONGO tables.

https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/JSON

- 85 -

[UK1]

name=Smith

forename=Henry

hired=08/11/2003

address=143 Blum Rd.

city=London

zipcode=NW1 2BP

CONNECT let you view it as a table in two different ways.

Column layout

The first way is to regard it as a table having one line per section, the columns being the keys you want

to display. In this case, the create statement could be:

create table contact (

contact char(16) flag=1,

name char(20),

forename char(32),

hired date date_format='DD/MM/YYYY',

address char(64),

city char(20),

zipcode char(8),

tel char(16))

engine=CONNECT table_type=INI file_name='contact.ini';

The column that will contain the section name can have any name but must specify flag=1. All other

column must have the names of the keys we want to display (case insensitive). The type can be character

or numeric depending on the key value type, and the length is the maximum expected length for the key

value. Once done, for instance:

select contact, name, hired, city, tel from contact;

This statement will display the file in tabular format.

contact name hired city tel

BER Bertrand NULL Issy-les-Mlx 09.54.36.29.60

WEL Schmitt 1985-02-19 Berlin 03.43.377.360

UK1 Smith 2003-11-08 London NULL

Only the keys defined in the create statements are visible; keys that do not exist in a section are displayed

as null if the column was declared as nullable, or pseudo null (blank for character, 1/1/70 for dates, and

0 for numeric) for columns declared NOT NULL.

All relational operations can be applied to this table. The table (and the file) can be updated, inserted and

conditionally deleted. The only constraint is that when inserting values, the section name must be the

first in the list of values.

Note 1: When inserting, if a section already exists, no new section will be created but the new values

will be added or replace those of the existing section. Thus, the following two commands are equivalent:

update contact set forename = 'Harry' where contact = 'UK1';

insert into contact (contact,forename) values('UK1','Harry');

Note 2: Because sections represent one line, a DELETE statement on a section key will delete the whole

section.

- 86 -

Row layout

To be a good candidate for tabular representation, an INI file should have often the same keys in all

sections. In practice, many files commonly found on computers, such as the win.ini file of the Windows

directory or the my.ini file cannot be viewed that way because each section have different keys. In this

case, a second way is to regard the file as a table having one row per section key and whose columns can

be the section name, the key name and the key value.

For instance, let us define the table:

create table xcont (

section char(16) flag=1,

keyname char(16) flag=2,

value char(32))

engine=CONNECT table_type=INI file_name='contact.ini'

option_list='Layout=Row';

In this statement, the “Layout” option sets the display format, Column by default or anything else not

beginning by ‘C’ for row layout display. The names of the three columns can be freely chosen. The Flag

option gives the meaning of the column. Specify flag=1 for the section name and flag=2 for the key

name. Otherwise, the column will contain the key value. Once done, the command:

select * from xcont;

Will display the following result:

section keyname value

BER name Bertrand

BER forename Olivier

BER address 21 rue Ferdinand Buisson

BER city Issy-les-Mlx

BER zipcode 92130

BER tel 09.54.36.29.60

BER cell 06.70.06.04.16

WEL name Schmitt

WEL forename Bernard

WEL hired 19/02/1985

WEL address 64 tiergarten strasse

WEL city Berlin

WEL zipcode 95013

WEL tel 03.43.377.360

UK1 name Smith

UK1 forename Henry

UK1 hired 08/11/2003

UK1 address 143 Blum Rd.

UK1 city London

UK1 zipcode NW1 2BP

Note: When processing an INI table, all section names are retrieved in a buffer of 8K bytes. For a big

file having many sections, this size can be increased using for example:

option_list='secsize=16K';

- 87 -

External Table Types
Because so many ODBC and JDBC drivers exist and only the main ones have been heavily tested, these

table types cannot be ranked as STABLE. Use them with care in production applications.

These types can be used to access tables belonging to the current or another data base server. Five types

are currently provided:

ODBC To be used to access tables from a database management system providing an ODBC connector.

ODBC is a standard of Microsoft and is currently available on Windows. On Linux, it can also be used

provided a specific application emulating ODBC is installed. Currently only unixODBC is supported.

JDBC To be used to access tables from a database management system providing a JDBC connector.

JDBC is an Oracle standard implemented in Java and principally meant to be used by Java applications.

Using it directly from C or C++ application seems to be almost impossible due to an Oracle bug still not

fixed. However, this can be achieved using a Java wrapper class used as an interface between C++ and

JDBC. On another hand, JDBC is available on all platforms and operating systems.

Mongo To access MongoDB collections as tables via their MongoDB Java Driver or MongoDB C

Driver. Mongo is available with all MariaDB distributions supporting Java (JDBC). However, because

this requires both MongoDB and the C Driver to be installed and operational, this table type is not

currently available in binary distributions but only when compiling MariaDB from source.

MySQL This type is the preferred way to access tables belonging to another MySQL or MariaDB server.

It uses the MySQL API to access the external table. Even though this can be obtained using the

FEDERATED(X) plugin, this specific type is used internally by CONNECT because it also makes it

possible to access tables belonging to the current server.

PROXY Internally used by some table types to access other tables from one table.

External Table Specification
The four main external table types – ODBC, JDBC, MONGO and MYSQL – are specified giving the following

information about:

1. The data source. This is specified in the CONNECTION option.

2. The remote table or view to access. This can be specified within the connection string or using

specific CONNECT options.

3. The column definitions. This can be also left to CONNECT to find them using the discovery

MariaDB feature.

The way this works is by establishing a connection to the external data source and by sending it an SQL

statement24 enabling to execute the original query. To enhance performance, it is necessary to have the

remote data source do the maximum processing. This is needed in particular to reduce the amount of data

returned by the data source.

This is why, for SELECT queries, CONNECT uses the cond_push MariaDB feature to retrieve the

maximum of the WHERE clause of the original query that can be added to the query sent to the data source.

This is automatic and does not require anything to be done by the user.

However, more can be done. In addition to access a remote table, CONNECT offers the possibility to

specify what the remote server must do. This is done by specifying it as a view in the SRCDEF option. For

example:

CREATE TABLE custnum ENGINE=CONNECT TABLE_TYPE=XXX

CONNECTION='connecton string'

SRCDEF='select pays as country, count(*) as customers from custnum

group by pays';

24 Or its equivalent using API functions for MONGO.

- 88 -

Doing so, the GROUP BY clause will be done by the remote server reducing considerably the amount of

data sent back on the connection.

This may even be increased by adding to the SRCDEF part of the “compatible” part of the query WHERE

clauses like this is done for table-based tables. Note that for MariaDB, this table has two columns, country

and customers. Supposing the original query is:

SELECT * FROM custnum WHERE (country = 'UK' OR country = 'USA') AND

customers > 5;

How can we make the WHERE clause be added to the sent SRCDEF? There are many problems:

1. Where to include the additional information.

2. What about the use of alias.

3. How to know what will be a WHERE clause or a HAVING clause.

The first problem is solved by preparing the srcdef view to receive clauses. The above example SRCDEF

becomes:

SRCDEF='select pays as country, count(*) as customers from custnum

where %s group by pays having %s';

The %s in the SRCDEF are place holders for eventual compatible parts of the original query WHERE clause.

If the SELECT query does not specify a WHERE clause or a not acceptable WHERE clause, place holders

will be filled by dummy clauses (1=1).

The other problems must be solved by adding to the create table a list of columns that must be translated

because they are aliases or/and aliases on aggregate functions that must become a HAVING clause. For

example, in this case:

CREATE TABLE custnum ENGINE=CONNECT TABLE_TYPE=XXX

CONNECTION='connecton string'

SRCDEF='select pays as country, count(*) as customers from custnum

where %s group by pays having %s'

OPTION_LIST='Alias=customers=*count(*);country=pays';

This is specified by the ALIAS option, to be used in the option list. It is made of a semi-colon separated

list of items containing:

1. The local column name (alias in the remote server)

2. An equal sign.

3. An eventual ‘*’ indicating this is column correspond to an aggregate function.

4. The remote column name.

With this information, CONNECT will be able to make the query sent to the remote data source:

select pays as country, count(*) as customers from custnum

where (pays = 'UK' OR pays = 'USA') group by country having

count(*) > 5

Note: Some data source, including MySQL and MariaDB, accept aliases in the HAVING clause. In that

case, the alias option could have been specified as:

OPTION_LIST='Alias=customers=*;country=pays';

Note: Another option exists, PHPOS, enabling to specify what place holders are present and in what order.

To be specified as “W”, “WH”, “H”, or “HW”. It is rarely used because by default CONNECT can set it

from the SRCDEF content. The only cases it is needed is when the SRCDEF contains only a HAVING place

holder or when the HAVING place holder occurs before the WHERE place holder, which can occur on

queries containing joins. CONNECT cannot handle more than one place holder of each type.

- 89 -

Note: SRCDEF is not available for MONGO tables, but other way of achieving this exist and are

describes in the MONGO table type chapter.

ODBC Table Type: Accessing Tables from another DBMS
ODBC (Open Database Connectivity) is a standard API for accessing database management systems

(DBMS). CONNECT uses this API to access data contained in other DBMS without having to implement

a specific application for each one. An exception is the access to MySQL that should be done using the

MYSQL table type.

Note: On Linux, unixODBC must be installed.

CONNECT ODBC Tables

These tables are given the type ODBC. For example, if a “Customers” table is contained in an Access™

database you can define it with a command such as:

create table Customer (

CustomerID varchar(5),

CompanyName varchar(40),

ContactName varchar(30),

ContactTitle varchar(30),

Address varchar(60),

City varchar(15),

Region varchar(15),

PostalCode varchar(10),

Country varchar(15),

Phone varchar(24),

Fax varchar(24))

engine=connect table_type=ODBC block_size=10

tabname='Customers'

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

Tabname option defaults to the table name. It is required if the source table name is different from the

name of the CONNECT table. Note also that for some data sources this name is case sensitive.

Often, because CONNECT can retrieve the table description using ODBC catalog functions, the column

definitions can be unspecified. For instance, this table can be simply created as:

create table Customer engine=connect table_type=ODBC

block_size=10 tabname='Customers'

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

Note however that this process defines the columns according to what is returned by the data source for

the SQLColumns function. This can be column types not supported by connect that are translated per

what is said in Data type conversion page1619. Also, some data sources fail to return all details such as

the number of decimals. This why you may want to use discovery to generate a table create statement

that you can retrieve by the show create table statement and further edit to meet your specific needs.

The BLOCK_SIZE specification will be used later to set the RowsetSize when retrieving rows from the

ODBC table. A reasonably large RowsetSize can greatly accelerate the fetching process.

If you specify the column description, the column names of your table must exist in the data source table.

However, you are not obliged to define all the data source columns and you can change the order of the

- 90 -

columns. Some type conversion can also be done if appropriate. For instance, to access the FireBird

sample table EMPLOYEE, you could define your table as:

create table empodbc (

EMP_NO smallint(5) not null,

FULL_NAME varchar(37) not null),

PHONE_EXT varchar(4) not null,

HIRE_DATE date,

DEPT_NO smallint(3) not null,

JOB_COUNTRY varchar(15),

SALARY double(12,2) not null)

engine=CONNECT table_type=ODBC tabname='EMPLOYEE'

connection='DSN=firebird';

This definition ignores the FIRST_NAME, LAST_NAME, JOB_CODE, and JOB_GRADE columns. It

places the FULL_NAME last column of the original table in second position. The type of the

HIRE_DATE column was changed from timestamp to date and the type of the DEPT_NO column was

changed from char to integer.

Currently, some restrictions apply to ODBC tables:

1. Cursor type is forward only (sequential reading) by default.

2. Prior to version 1.04 no indexing of ODBC tables (do not specify any columns as key) However,

because CONNECT can often add a where clause to the query sent to the data source, indexing will be

used by the data source if it supports it. (Remote indexing is available with version 1.04)

3. This version of CONNECT ODBC supports SELECT and INSERT. UPDATE and DELETE are

also supported in a somewhat restricted way (see below). For other operations, use an ODBC table

with the EXECSRC option (see below) to directly send proper command to the data source.

Random Access of ODBC Tables

In CONNECT version 1.03 ODBC tables are not indexable. Version 1.04 adds remote indexing facility

to the ODBC table type.

However, some queries require random access to an ODBC table; for instance, when it is joined to

another table or used in an order by queries applied to a long column or large tables.

There are several ways to enable random (position) access to a CONNECT ODBC table. They are

depending on the following table options:

Option Type Used For

Block_Size Integer Specifying the rowset size.

Memory* Integer Storing the result set in memory.

Scrollable* Boolean Using a scrollable cursor.

(*): To be specified in the option_list.

When dealing with small tables, the simpler way to enable random access is to specify a rowset size

equal of larger than the table size (or the result set size if a push down where clause is used). This means

that the whole result is in memory on the first FETCH and CONNECT will use it for further positional

accesses.

Another way to have the result set in memory is to use the MEMORY option. This option can be set to the

following values:

0 No memory used.

1 Memory size required is calculated during the first sequential table read. The allocated memory is

filled during the second sequential read. Then the table rows are retrieved from the memory.

- 91 -

2 A first query is executed to get the result set size and the needed memory is allocated. It is filled on

the first sequential reading. Then random access of the table is possible.

In the case of an ORDER BY query, MariaDB firstly retrieves the sequentially the result set and the position

of each records. Often the sort can be done from the result set if it is not too big. But if too big, or if it

implies some “long” columns, only the positions are sorted and MariaDB retrieves the final result from

the table read in random order. To be able to retrieve it from memory after the first sequential read, the

MEMORY option must be set to 2.

For tables too large to be stored in memory remains the possibility to use a scrollable cursor. However,

scrollable cursors are not supported by all data sources.

With CONNECT version 1.04, another way to provide random access is to specify some columns to be

indexed. This should be done only when the corresponding column of the source table is also indexed.

This should be used for tables too large to be stored in memory and is similar to the remote indexing

used by the MYSQL table type and by the FEDERATED engine.

There remains the possibility to extract requested data from the external table and to construct another

table of any file format from the data source. For instance, to construct a fixed formatted DOS table

containing the CUSTOMER table data, create the table as:

create table Custfix engine=connect File_name='customer.txt'

 table_type=fix block_size=20 as select * from customer;

Now you can use custfix for fast database operations on the copied customer table data.

Retrieving Data from a Spread Sheet

ODBC can also be used to create tables based on tabular data belonging to an Excel spread sheet:

create table XLCONT

engine=CONNECT table_type=ODBC tabname='CONTACT'

Connection='DSN=Excel Files;DBQ=D:/Ber/Doc/Contact_BP.xls;';

This supposes that a tabular zone of the sheet including column headers is defined as a table named

CONTACT or using a “named reference”. Refer to the Excel documentation for how to specify tables

inside sheets. Once done, you can ask:

select * from xlcont;

This will extract the data from Excel and display:

Nom Fonction Societe

Boisseau Frederic 9 Telecom

Martelliere Nicolas Vidal SA (Groupe UBM)

Remy Agathe Price Minister

Du Halgouet Tanguy Danone

Vandamme Anna GDF

Thomas Willy Europ Assistance France

Thomas Dominique Acoss (DG des URSSAF)

Thomas Berengere Responsable SI Decisionnel DEXIA Credit Local

Husy Frederic Responsable Decisionnel Neuf Cegetel

Lemonnier Nathalie Directeur Marketing Client Louis Vuitton

Louis Loic Reporting International Decisionnel Accor

Menseau Eric Orange France

Here again, the columns description was left to CONNECT when creating the table.

- 92 -

Multiple ODBC tables

The concept of multiple table can be extended to ODBC tables when they are physically represented by

files, for instance to Excel or Access tables. The condition is that the connect string for the table must

contain a field DBQ=filename, in which wildcard characters can be included as for multiple=1 tables in

their filename. For instance, a table contained in several Excel files CA200401.xls, CA200402.xls,

…CA200412.xls can be created by a command such as:

create table ca04mul (Date char(19), Operation varchar(64),

Debit double(15,2), Credit double(15,2))

engine=CONNECT table_type=ODBC multiple=1

qchar= '"' tabname='bank account'

connection='DSN=Excel Files;DBQ=D:/Ber/CA/CA2004*.xls;';

Providing that in each file the applying information is internally set for Excel as a table named “bank

account”. This extension to ODBC does not support multiple=2. The qchar option was specified to make

the identifiers quoted in the select statement sent to ODBC, in particular when the table or column names

contain blanks, to avoid SQL syntax errors.

Caution: Avoid accessing tables belonging to the currently running MariaDB server via the MySQL

ODBC connector. This may not work and cause the server to be restarted.

Performance consideration

To avoid extracting entire tables from an ODBC source, which can be a lengthy process, CONNECT

extracts the “compatible” part of query WHERE clauses and add it to the ODBC query. Compatible means

that it must be understood by the data source. In particular, clauses involving scalar functions are not

kept because the data source may have different functions than MariaDB or use a different syntax. Of

course, clauses involving sub-select are also skipped. This will transfer eventual indexing to the data

source.

Take care with clauses involving string items because you may not know whether they are treated by the

data source as case sensitive or case insensitive. In doubt, make your queries as if the data source was

processing strings as case sensitive to avoid incomplete result.

Using ODBC Tables inside correlated sub-queries

Unlike not correlated subqueries that are executed only once, correlated subqueries are executed many

times. It is what ODBC calls a "requery". Several methods can be used by CONNECT to deal with this

depending on the setting of the MEMORY or SCROLLABLE Boolean options:

Option Description

Default Implementing "requery" by discarding the current result set and re-submitting the

query (as MFC does)

Memory=1 or 2 Storing the result set in memory as MYSQL tables do.

Scrollable=Yes Using a scrollable cursor.

Note: the MEMORY and SCROLLABLE options must be specified in the OPTION_LIST.

Because the table is accessed several times, this can make queries last very long except for small tables

and is almost unacceptable for big tables. However, if it cannot be avoided, using the memory method is

the best choice and can be more than four times faster than the default method. If it is supported by the

driver, using a scrollable cursor is slightly slower than using memory but can be an alternative to avoid

memory problems when the sub-query returns a huge result set.

If the result set is of reasonable size, it is also possible to specify the BLOCK_SIZE option equal or slightly

larger than the result set. The whole result set being read on the first fetch, can be accessed many times

without having to do anything else.

Another good workaround is to replace within the correlated sub-query the ODBC table by a local copy

of it because MariaDB is often able to optimize the query and to provide a very fast execution.

- 93 -

Accessing specified views

Instead of specifying a source table name via the TABNAME option, it is possible to retrieve data from a

“view” whose definition is given in a new option SRCDEF. For instance:

CREATE TABLE custnum (

country varchar(15) NOT NULL,

customers int(6) NOT NULL)

ENGINE=CONNECT TABLE_TYPE=ODBC BLOCK_SIZE=10

CONNECTION='DSN=MS Access Database;DBQ=C:/Program Files/Microsoft

Office/Office/1033/FPNWIND.MDB;'

SRCDEF='select country, count(*) as customers from customers group by

country';

Or simply, because CONNECT can retrieve the returned column definition:

CREATE TABLE custnum ENGINE=CONNECT TABLE_TYPE=ODBC BLOCK_SIZE=10

CONNECTION='DSN=MS Access Database;DBQ=C:/Program Files/Microsoft

Office/Office/1033/FPNWIND.MDB;'

SRCDEF='select country, count(*) as customers from customers group by

country';

Then, when executing for instance:

select * from custnum where customers > 3;

The processing of the group by is done by the data source, which returns only the generated result set on

which only the where clause is performed locally. The result:

country customers

Brazil 9

France 11

Germany 11

Mexico 5

Spain 5

UK 7

USA 13

Venezuela 4

This makes possible to let the data source do complicated operations, such as joining several tables or

executing procedures returning a result set. This minimizes the data transfer through ODBC.

CRUD Operations

The only data modifying operations are the INSERT, UPDATE and DELETE commands. They can be

executed successfully only if the data source database or tables are not read/only.

INSERT Command

When inserting values to an ODBC table, local values are used and sent to the ODBC table. This does

not make any difference when the values are constant but in a query such as:

insert into t1 select * from t2;

Where t1 is an ODBC table, t2 is a locally defined table that must exist on the local server. Besides, it is

a good way to create a distant ODBC table from local data.

CONNECT does not directly support INSERT commands such as:

- 94 -

insert into t1 values(2,'Deux') on duplicate key update msg = 'Two';

Indeed, the “on duplicate key update” part of it is ignored, and will result in error if the key value is

duplicated.

UPDATE and DELETE Commands

Unlike the INSERT command, UPDATE and DELETE are supported in a simplified way. They are just

rephrased to correspond to the data source syntax and sent to the data source for execution. Let us suppose

we created the table:

create table tolite (

id int(9) not null,

nom varchar(12) not null,

nais date default null,

rem varchar(32) default null)

ENGINE=CONNECT TABLE_TYPE=ODBC tabname='lite'

CONNECTION='DSN=SQLite3 Datasource;Database=test.sqlite3'

CHARSET=utf8 DATA_CHARSET=utf8;

We can populate it by:

insert into tolite values(1,'Toto',now(),'First'),

(2,'Foo','2012-07-14','Second'),(4,'Machin','1968-05-30','Third');

The function now() will be executed by MariaDB and it returned value sent to the ODBC table.

Let us see what happens when updating the table. If we use the query:

Update tolite set nom = 'Gillespie' where id = 10;

CONNECT will rephrase the command as:

UPDATE lite SET nom = 'Gillespie' WHERE id = 10;

What it did is just to replace the local table name by the remote table name and change all the back ticks

to blanks or the data source identifier quoting characters if QUOTED is specified. Then this command will

be sent to the data source to be executed by it.

This is simpler and can be faster than doing a positional update using a cursor and commands such as

“select … for update of …” that are not supported by all data sources. However, there are some

restrictions that must be understood due to the way it is handled by MariaDB.

1. MariaDB does not know about all the above. The command will be parsed as if it were to be

executed locally. Therefore, it must respect the MySQL syntax.

2. Being executed by the data source, the (rephrased) command must also respect the data source

syntax.

3. All data referenced in the SET and WHERE clause belongs to the data source.

This is possible because both MariaDB and the data source are using the SQL language. But you must

use only the basic features that are part of the core SQL language. For instance, keywords like IGNORE

or LOW_PRIORITY will cause syntax error with many data source.

Scalar function names also can be different, which severely restrict the use of them. For instance:

update tolite set nais = now() where id = 2;

This will not work with SQLite3, the data source returning an “unknown scalar function” error message.

Note that in this particular case, you can rephrase it to:

update tolite set nais = date('now') where id = 2;

- 95 -

This understood by both parsers, and even if this function would return NULL executed by MariaDB, it

does return the current date when executed by SQLite3. But this begins to become too trickery so to

overcome all these restrictions, and permit to have all types of commands executed by the data source,

CONNECT provides a specific ODBC table subtype described now.

Sending commands to a Data Source

This can be done using a special subtype of ODBC tables. Let us see this on an example:

create table crlite (

command varchar(128) not null,

number int(5) not null flag=1,

message varchar(255) flag=2)

engine=connect table_type=odbc

connection='Driver=SQLite3 ODBC

Driver;Database=test.sqlite3;NoWCHAR=yes'

option_list='Execsrc=1';

The key points in this create statement are the EXECSRC option and the column definition.

The EXECSRC option tells that this table will be used to send a command to the data source. Most of the

sent commands do not return result set. Therefore, the table columns are used to specify the command to

be executed and to get the result of the execution. The name of these columns can be chosen arbitrarily,

their function coming from the FLAG value:

Flag=0: The command to execute.

Flag=1: The affected rows, or -1 in case of error, or the result number of column if the command returns

a result set.

Flag=2: The returned (eventually error) message.

How to use this table and specify the command to send? By executing a command such as:

select * from crlite where command = 'a command';

This will send the command specified in the WHERE clause to the data source and return the result of its

execution. The syntax of the WHERE clause must be exactly as shown above. For instance:

select * from crlite where command =

'CREATE TABLE lite (

ID integer primary key autoincrement,

name char(12) not null,

birth date,

rem varchar(32))';

This command returns:

command number message

CREATE TABLE lite (ID integer primary key autoincrement, name… 0 Affected rows

Now we can create a standard ODBC table on the newly created table:

CREATE TABLE tlite

ENGINE=CONNECT TABLE_TYPE=ODBC tabname='lite'

CONNECTION='Driver=SQLite3 ODBC

Driver;Database=test.sqlite3;NoWCHAR=yes'

CHARSET=utf8 DATA_CHARSET=utf8;

We can populate it directly using the supported INSERT statement:

- 96 -

insert into tlite(name,birth) values('Toto','2005-06-12');

insert into tlite(name,birth,rem) values('Foo',NULL,'No ID');

insert into tlite(name,birth) values('Truc','1998-10-27');

insert into tlite(name,birth,rem) values('John','1968-05-30','Last');

And see the result:

select * from tlite;

ID name birth rem

1 Toto 2005-06-12 NULL

2 Foo NULL No ID

3 Truc 1998-10-27 NULL

4 John 1968-05-30 Last

Any command, for instance UPDATE, can be executed from the crlite table:

select * from crlite where command =

'update lite set birth = ''2012-07-14'' where ID = 2';

This command returns:

command number message

update lite set birth = '2012-07-15' where ID = 2 1 Affected rows

Let us verify it:

select * from tlite where ID = 2;

ID name birth rem

2 Foo 2012-07-15 No ID

The syntax to send a command is rather strange and may seem unnatural. It is possible to use an easier

syntax by defining a stored procedure such as:

create procedure send_cmd(cmd varchar(255))

MODIFIES SQL DATA

select * from crlite where command = cmd;

Now you can send commands like this:

call send_cmd('drop tlite');

This is possible only when sending one single command.

Sending several commands together

Grouping commands uses an easier syntax and is faster because only one connection is made for the all

of them. To send several commands in one call, use the following syntax:

select * from crlite where command in (

'update lite set birth = ''2012-07-14'' where ID = 2',

'update lite set birth = ''2009-08-10'' where ID = 3');

When several commands are sent, the execution stops at the end of them or after a command that is in

error. To continue after n errors, set the option maxerr = n (0 by default) in the option list.

- 97 -

Note 1: It is possible to specify the SRCDEF option when creating an EXECSRC table. It will be the

command sent by default when a WHERE clause is not specified.

Note 2: Most data sources do not allow sending several commands separated by semi-colons.

Note 3: Quotes inside commands must be escaped. This can be avoided by using a different quoting

character than the one used in the command

Note 4: The sent command must obey the data source syntax.

Note 5: Sent commands apply in the specified database. However, they can address any table within this

database, or belonging to another database, using the name syntax schema.tabname.

Connecting to a Data Source

There are two ways to establish a connection to a data source:

1. Using SQLDriverConnect and a Connection String

2. Using SQLConnect and a Data Source Name (DSN)

The first way uses a Connection String whose components describe what is needed to establish the

connection. It is the most complete way to do it and by default CONNECT uses it.

The second way is a simplified way in which ODBC is just given the name of a DSN that must have

been defined to ODBC or UnixODBC and that contains the necessary information to establish the

connection. Only the user name and password can be specified out of the DSN specification.

(1) Defining the Connection String

Using the first way, the connection string must be specified. This is sometimes the most difficult task

when creating ODBC tables because, depending on the operating system and the data source, this string

can widely differ.

The format of the ODBC Connection String is:

connection-string::= empty-string[;] | attribute[;] | attribute; connection-string

empty-string ::=

attribute ::= attribute-keyword=attribute-value | DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | UID | PWD | driver-defined-attribute-keyword

attribute-value ::= character-string

driver-defined-attribute-keyword = identifier

Where character-string has zero or more characters; identifier has one or more characters; attribute-

keyword is not case-sensitive; attribute-value may be case-sensitive; and the value of the DSN keyword

does not consist solely of blanks. Due to the connection string grammar, keywords and attribute values

that contain the characters []{}(),;?*=!@ should be avoided. The value of the DSN keyword cannot

consist only of blanks, and should not contain leading blanks. Because of the grammar of the system

information, keywords and data source names cannot contain the backslash (\) character. Applications

do not have to add braces around the attribute value after the DRIVER keyword unless the attribute

contains a semicolon (;), in which case the braces are required. If the attribute value that the driver

receives includes the braces, the driver should not remove them, but they should be part of the returned

connection string.

ODBC Defined Connection Attributes

The ODBC defined attributes are:

• DSN - the name of the data source to connect to25.

• DRIVER - the name of the driver to connect to. You can use this in DSN-less connections.

• 25 You must create the DSN before attempting to refer to it. You create new DSNs through the ODBC

Administrator (Windows), ODBCAdmin (unixODBC's GUI manager) or by including its definition

in the odbc.ini file.

- 98 -

• FILEDSN - the name of a file containing the connection attributes.

• UID/PWD - any username and password the database requires for authentication.

• SAVEFILE - request the DSN attributes are saved in this file.

Other attributes are DSN dependent attributes. The connection string can give the name of the driver in

the DRIVER field or the data source in the DSN field (attention! meet the spelling and case) and has

other fields that depend on the data source. When specifying a file, the DBQ field must give the full path

and name of the file containing the table. Refer to the specific ODBC connector documentation for the

exact syntax of the connection string.

(2) Using a Predefined DSN

This is done by specifying in the option list the Boolean option “UseDSN” as yes or 1. In addition, string

options “user” and “password” can be optionally specified in the option list

When doing so, the connection string just contains the name of the predefined Data Source. For instance:

CREATE TABLE tlite ENGINE=CONNECT TABLE_TYPE=ODBC tabname='lite'

CONNECTION='SQLite3 Datasource'

OPTION_LIST='UseDSN=Yes,User=me,Password=mypass';

Note: the connection data source name (limited to 32 characters) should not be preceded by “DSN=”.

ODBC Tables on Linux/Unix: In order to use ODBC tables, you will need to have unixODBC installed.

Additionally, you will need the ODBC driver for your foreign server's protocol. For example, for MS

SQL Server or Sybase, you will need to have FreeTDS installed.

Make sure the user running mysqld (usually the mysql user) has permission to the ODBC data source

configuration and the ODBC drivers.

If you get an error on Linux/Unix when using TABLE_TYPE=ODBC:

Error Code: 1105 [unixODBC][Driver Manager]Can't open lib

'/usr/cachesys/bin/libcacheodbc.so' : file not found

You must make sure that the user running mysqld (usually "mysql") has enough permission to load the

ODBC driver library. It can happen that the driver file does not have enough read privileges (use chmod

to fix this), or loading is prevented by SELinux configuration.

Try this command in a shell to check if the driver had enough permission:

sudo -u mysql ldd /usr/cachesys/bin/libcacheodbc.so

SELinux

SELinux can cause various problems. If you think SELinux is causing problems, check the system log

(e.g. /var/log/messages) or the audit log (e.g. /var/log/audit/audit.log).

mysqld can't load some executable code, so it can't use the ODBC driver.

Example error:

Error Code: 1105 [unixODBC][Driver Manager]Can't open lib

'/usr/cachesys/bin/libcacheodbc.so' : file not found

Audit log:

type=AVC msg=audit(1384890085.406:76): avc: denied { execute }

for pid=1433 comm="mysqld"

path="/usr/cachesys/bin/libcacheodbc.so" dev=dm-0 ino=3279212

scontext=unconfined_u:system_r:mysqld_t:s0

tcontext=unconfined_u:object_r:usr_t:s0 tclass=file

- 99 -

mysqld can't open TCP sockets on some ports, so it can't connect to the foreign server.

Example error:

ERROR 1296 (HY000): Got error 174 '[unixODBC][FreeTDS][SQL

Server]Unable to connect to data source' from CONNECT

Audit log:

type=AVC msg=audit(1423094175.109:433): avc: denied {

name_connect } for pid=3193 comm="mysqld" dest=1433

scontext=system_u:system_r:mysqld_t:s0

tcontext=system_u:object_r:mssql_port_t:s0 tclass=tcp_socket

ODBC Catalog Information

First of all, it must be understood that depending on the version of the used ODBC driver, some additional

information on the tables are existing, such as table QUALIFIER or OWNER for old versions, now named

CATALOG or SCHEMA since version 3.

CATALOG is apparently rarely used by most data sources, but SCHEMA (formerly OWNER) is and

corresponds to the DATABASE information of MySQL.

The issue is that if no schema name is specified, some data sources return information for all schemas

while some others only return the information of the “default” schema. In addition, the used “schema”

or “database” is sometimes implied by the connection string and sometimes is not. Sometimes, it also

can be included in a data source definition.

CONNECT offers two ways to specify this information:

1. When specified, the DBNAME create table option is regarded by ODBC tables as the SCHEMA name.

2. Table names can be specified as “sch.tab” or “cat.sch.tab” allowing setting the schema and eventual

catalog information.

When both are used, the qualified table name has precedence over DBNAME. For instance:

Tabname DBname Description

test.t1 The t1 table of the test schema.

test.t1 mydb The t1 table of the test schema (test has precedence)

t1 mydb The t1 table of the mydb schema

%.%.% All tables in all catalogs and all schemas

t1 The t1 table in the default or all schema depending on the DSN

%.t1 The t1 table in all schemas for all DSN

test.% All tables in the test schema

When creating a standard ODBC table, you should make sure only one source table is specified.

Specifying more than one source table must be done only for CONNECT catalog tables (with

CATFUNC=tables or columns)

In particular, when column definition is left to the Discovery feature, if tables with the same name are

present in several schemas and the schema name is not specified, several columns with the same name

will be generated. This will make the creation to fail with a not very explicit error message.

Note: With some ODBC drivers, the DBNAME option or qualified table name is useless because the

schema implied by the connection string or the definition of the data source has priority over the specified

DBNAME.

- 100 -

Table name case

Another issue when dealing with ODBC tables is the way table and column names are handled regarding

of the case.

For instance, Oracle follows to the SQL standard here. It converts non-quoted identifiers to upper case.

This is correct and expected. PostgreSQL is not standard. It converts identifiers to lower case.

MySQL/MariaDB is not standard. They preserve identifiers on Linux, and convert to lower case on

Windows. Think about that if you fail to see a table or a column on an ODBC data source.

JDBC Table Type: Accessing Tables from another DBMS
The JDBC table type is a newly implemented table type and this first version should be regarded as a

beta release. However, if the automatic compilation of it is possible after the java JDK was installed, the

complete distribution of it is not fully implemented26 in older versions.

This will require that:

1. The Java SDK is installed on your system.

2. The java wrapper class files are available on your system.

3. And of course, some JDBC drivers exist to be used with the matching DBMS.

Point 2 was made automatic in the newest versions of MariaDB.

Compiling from Source Distribution

Even when the Java JDK has been installed, CMake sometimes cannot find the location where it stands.

For instance, on Linux the Oracle Java JDK package might be installed in a path not known by the CMake

lookup functions causing error message such as:

CMake Error at /usr/share/CMake/Modules/FindPackageHandleStandardArgs.CMake:148 (message):

 Could NOT find Java (missing: Java_JAR_EXECUTABLE Java_JAVAC_EXECUTABLE

 Java_JAVAH_EXECUTABLE Java_JAVADOC_EXECUTABLE)

When this happen, provide a Java prefix as a hint on where the package was loaded. For instance, on

Ubuntu I was obliged to enter:

export JAVA_HOME=/usr/lib/jvm/java-8-oracle

After that, the compilation of the CONNECT JDBC type was made successfully.

Compiling the Java source files

They are the source of the java wrapper classes used to access JDBC drivers. In source distribution, they

are in the CONNECT source directory.

The default wrapper, JdbcInterface, uses the standard way to get a connection to the drivers via the

DriverManager.getConnection method. Other wrappers enable connection to a Data Source, eventually

implementing pooling. However, they must be compiled and installed manually.

The available wrappers are:

Wrapper Description

JdbcInterface Used to make the connection with available drivers the standard way.

ApacheInterface Based on the Apache common-dbcp2 package this interface enables making

connections to DBCP data sources with any JDBC drivers.

MariadbInterface Makes connection to a MariaDB data source.

26 The distributed JdbcInterface.jar file contains the JdbcInterface wrapper only. New versions

distribute a JavaWrappers.jar that contains all currently existing wrappers.

- 101 -

Wrapper Description

MysqlInterface Makes connection to a Mysql data source. Must be used with a MySQL driver

that implements data sources.

OracleInterface Makes connection to an Oracle data source.

PostgresqlInterface Makes connection to a Postgresql data source.

The wrapper used by default is specified by the connect_java_wrapper session variable and is initially

set to wrappers/JdbcInterface. The wrapper to use for a table can also be specified in the option list as

a wrapper option of the “create table” statements.

Note: Conforming java naming usage, class names are preceded by the java package name with a slash

separator. However, this is not mandatory for CONNECT that adds the package name if it is missing.

The JdbcInterface wrapper is always usable when Java is present on your machine. Binary distributions

have this wrapper already compiled as a JdbcInterface.jar file installed in the plugin directory whose path

is automatically included in the class path of the JVM. Recent versions also add a JavaWrappers.jar that

contains all wrappers, including those used by the MONGO table type. Therefore, there is no need to

worry about their path.

Compiling the ApacheInterface wrapper requires that the Apache common-DBCP2 package be installed.

Other wrappers are to be used only with the matching JDBC drivers that must be available when

compiling them.

It is a good idea to export all the compiled wrappers in a unique jar file (like the JavaWrappers.jar of the

binary distribution).

Installing the jar file in the plugin directory is the best place because it is part of the class path.

Depending on what is installed on your system, the source files can be reduced accordingly.

Setting the required information

Before any operation with a JDBC driver can be made, CONNECT must initialize the environment that

will make working with Java possible. This will consist of:

1. Loading dynamically the JVM library module.

2. Creating the Java Virtual Machine.

3. Establishing contact with the java wrapper class.

4. Connecting to the used JDBC driver.

Indeed, the JVM library module is not statically linked to the CONNECT plugin. This is to make it

possible to use a CONNECT plugin that has been compiled with the JDBC table type on a machine where

the Java SDK is not installed. Otherwise, users not interested in the JDBC table type would be obliged

to install the Java SDK on their machine to be able to load the CONNECT storage engine.

JVM Library Location

If the JVM library (jvm.dll on Windows, libjvm.so on Linux) was not placed in the standard library load

path, CONNECT cannot find it and must be told where to search for it. This happens in particular on

Linux when the Oracle Java package was installed in a private location.

If the JAVA_HOME variable was exported as explained above, CONNECT can sometimes find it using

this information. Otherwise, its search path can be added to the LD_LIBRARY_PATH environment

variable. But all this is complicated because making environment variables permanent on Linux is painful

(many different methods must be used depending on the Linux version and the used shell).

Therefore, CONNECT introduced a new global variable connect_jvm_path to store this information. It

can be set when starting the server as a command line option or even afterwards before the first use of

the JDBC table type. For example:

set global connect_jvm_path="/usr/lib/jvm/java-8-oracle/jre/lib/i386/client"

- 102 -

or27:

set global connect_jvm_path="/usr/lib/jvm/java-8-oracle/jre/lib/i386/server"

Note that this may not be required on Windows because the path to the JVM library can sometimes be

found in the registry.

Once this library is loaded, CONNECT can create the required Java Virtual Machine.

Java Class Path

This is the list of paths Java searches when loading classes. With CONNECT, the classes to load will be

the java wrapper classes used to communicate with the drivers, and the used JDBC driver classes that

are grouped inside jar files. If the ApacheInterface wrapper must be used, the class path must also include

all three jars used by the Apache package. If MONGO tables using the MongoDB Java Driver will be

used, add also its path to the JDBC paths.

Caution: This class path is passed as a parameter to the Java Virtual Machine (JVM) when creating it

and cannot be modified as it is a read only property. In addition, because MariaDB is a multi-threading

application, this JVM cannot be destroyed and will be used throughout the entire life of the MariaDB

server. Therefore, be sure it is correctly set before you use the JDBC table type for the first time.

Otherwise there will be practically no alternative than to shut down the server and restart it.

The path to the wrapper classes must point to the directory containing the wrappers sub-directory. If a

JdbcInterface.jar file was made, its path is the directory where it is located followed by the jar file name.

It is unclear where because this will depend on the installation process. If you start from a source

distribution, it can be in the storage/connect directory where the CONNECT source files are or where

you moved them or compiled the JdbcInterface.jar file.

For binary distributions, there is nothing to do because the jar files have been installed in the plugin

directory whose path is always automatically included in the class path available to the JVM.

Remaining are the paths of all the installed JDBC drivers that you intend to use. Remember that their

path must include the jar file itself. Some applications use an environment variable CLASSPATH to

contain them. Paths are separated by ‘:’ on Linux and by ‘;’ on Windows.

If the CLASSPATH variable exists and if it is available inside MariaDB, so far so good. You can check

this using an UDF function provided by CONNECT that returns environment variable values:

create function envar returns string soname 'ha_connect.so';

select envar('CLASSPATH');

Most of the time, this will return null or some required files are missing. Therefore, CONNECT

introduced a global variable to store this information. The paths specified in this variable will be added

and have precedence to the ones, if any, of the CLASSPATH environment variable. As for the jvm path,

this variable connect_class_path should be specified when starting the server but can also be set before

using the JDBC table type for the first time.

The current directory (sql/data) is also placed by CONNECT at the beginning of the class path.

As an example, here is how I start MariaDB when doing tests on Linux:

olivier@olivier-Aspire-8920:~$ sudo /usr/local/mysql/bin/mysqld -u root --console --default-storage-

engine=myisam --skip-innodb --connect_jvm_path="/usr/lib/jvm/java-8-oracle/jre/lib/i386/server" --

connect_class_path="/home/olivier/mariadb/10.1/storage/connect:/media/olivier/SOURCE/mysql-

connector-java-6.0.2/mysql-connector-java-6.0.2-bin.jar"

27 The client library is smaller and faster for connection. The server library is more optimized and can be

used in case of heavy load usage.

- 103 -

CONNECT JDBC Tables

These tables are given the type JDBC. For instance, supposing you want to access the boys table located

on an external local or remote database management system providing a JDBC connector:

create table boys (

name char(12),

city char(12),

birth date,

hired date);

To access this table via JDBC you can create a table such as:

create table jboys engine=connect table_type=JDBC tabname=boys
connection='jdbc:mysql://localhost/dbname?user=root';

The CONNECTION option is the URL used to establish the connection with the remote server. Its syntax

depends on the external DBMS and in this example, is the one used to connect as root to a MySQL or

MariaDB local database using the MySQL JDBC connector.

As for ODBC, the columns definition can be omitted and will be retrieved by the discovery process. The

restrictions concerning column definitions are the same as for ODBC.

Note: The dbname indicated in the URL corresponds for many DBMS to the catalog information. For

MySQL and MariaDB it is the schema (often called database) of the connection.

Using a Federated Server

Alternatively, a JDBC table can specify its connection options via a Federated server. For instance,

supposing you have a table accessing an external Postgresql table defined as:

create table juuid engine=connect table_type=JDBC

tabname=testuuid

connection='jdbc:postgresql:test?user=postgres&password=pwd';c

reate table jt1 engine=connect table_type=JDBC

connection='jdbc:postgresql:mtr' dbname=public tabname=t1

option_list='User=mtr,Password=mtr';

You can create a Federated server:

create server 'post1' foreign data wrapper 'postgresql' options (

HOST 'localhost',

DATABASE 'mtrtest',

USER 'mtrpostgres',

PASSWORD 'mtrpwd',

PORT 0,

SOCKET '',

OWNER 'rootpostgres');

Now the JDBC table can be created by:

- 104 -

create table juuid engine=connect table_type=JDBC create table

jt1 engine=connect table_type=JDBC connection='post1'

dbname=public tabname=t1estuuid;

or by:

create table juuid engine=connect table_type=JDBC

connection='post1/testuuid'; create table jt1 engine=connect

table_type=JDBC connection='post1/t1' dbname=public;

or even by:

create table jt1 engine=connect table_type=JDBC

connection='post1/public.t1';

In any case, the location of the remote table can be changed in the Federated server without having to

alter all the tables using this server.

JDBC needs a URL to establish a connection. CONNECT can construct that URL from the information

contained in such Federated server definition when the URL syntax is similar to the one of MySQL,

MariaDB or Postgresql. However, some other DBMS’s such as Oracle use a different URL syntax. In

this case, simply replace the HOST information by the required URL in the Federated server definition.

For instance:

create server 'oracle' foreign data wrapper 'oracle' options (

HOST 'jdbc:oracle:thin:@localhost:1521:xe',

DATABASE 'SYSTEM',

USER 'system',

PASSWORD 'manager',

PORT 0,

SOCKET '',

OWNER 'SYSTEM');

Now you can create an Oracle table with something like this:

create table empor engine=connect table_type=JDBC

connection='oracle/HR.EMPLOYEES';

Note: Oracle, as Postgresql, does not seem to understand the DATABASE setting as the table schema

that must can be specified in the Create Table statement if not the default one.

Connecting to a JDBC driver

When the connection to the driver is established by the JdbcInterface wrapper class, it uses the options

that are provided when creating the CONNECT JDBC tables. Inside the default Java wrapper, the driver’s

main class is loaded by the DriverManager.getConnection function that takes three arguments:

URL That is the URL that you specified in the CONNECTION option.

User As specified in the OPTION_LIST or NULL if not specified.

Password As specified in the OPTION_LIST or NULL if not specified.

The URL varies depending on the connected DBMS. Refer to the documentation of the specific JDBC

driver for a description of the syntax to use. User and password can also be specified in the option list.

- 105 -

Beware that the database name in the URL can be interpreted differently depending on the DBMS. For

MySQL, this is the schema in which the tables are found. However, for Postgresql, this is the catalog and

the schema must can be specified using the CONNECT dbname option (seems to be ‘public’ by default).

For instance, a table accessing a Postgresql table via JDBC can be created with a create statement such

as:

create table jt1 engine=connect table_type=JDBC

connection='jdbc:postgresql://localhost/mtr' dbname=public tabname=t1

option_list='User=mtr,Password=mtr';

Often, more parameters are available in the URL, such as the user name and password. Assuming the

default host and schema are ‘localhost’ and ‘public’ this table can be alternatively created by:

create table jt1 engine=connect table_type=JDBC tabname=t1

connection='jdbc:postgresql:mtr?user=mtr&password=mtr';

Note: In previous versions of JDBC, to obtain a connection, java first had to initialize the JDBC driver

by calling the method Class.forName. In this case, see the documentation of your DBMS driver to

obtain the name of the class that implements the interface java.sql.Driver. This name can be

specified as an option DRIVER to be put in the option list. However, most modern JDBC drivers since

version 4 are self-loading and do not require this option to be specified. Giving the driver class name is

also required to retrieve a driver inside an executable jar file.

The wrapper class also creates some required items and a statement class. Some characteristics of this

statement will depend on the options specified when creating the table:

Scrollable28 Determines the cursor type: no= forward_only or yes=scroll_insensitive.

Block_size Will be used to set the statement fetch size.

Fetch Size

The fetch size determines the number of rows that are internally retrieved by the driver on each

interaction with the DBMS. Its default value depends on the JDBC driver. It is equal to 10 for some

drivers but not for the MySQL or MariaDB connectors.

The MySQL/MariaDB connectors retrieve all the rows returned by one query and keep them in a memory

cache. This is generally fine in most cases but not when retrieving a large result set that can make the

query fail with a memory exhausted exception.

To avoid this, when accessing a big table and expecting large result sets, you should specify the

BLOCK_SIZE option to 1 (the only acceptable value). However, a problem remains:

Suppose you execute a query such as:

select id, name, phone from jbig limit 10;

Not knowing the limit clause, CONNECT sends to the remote DBMS the query:

SELECT id, name, phone FROM big;

In this query, big can be a huge table having million rows. Having correctly specified the block size as 1

when creating the table, the wrapper just reads the 10 first rows and stops. However, when closing the

statement, these MySQL/MariaDB drivers must still retrieve all the rows returned by the query.

Therefore, the wrapper class when closing the statement also cancels the query to stop that extra reading.

The bad news is that if it works all right for some previous versions of the MySQL driver, it does not

work for new versions as well as for the MariaDB driver that apparently ignores the cancel command.

28 To be specified in the option list.

- 106 -

The good news is that you can use old MySQL driver to access MariaDB databases. It is possible also

that this bug will be fixed in future versions of the drivers.

Connection to a Data Source

This is the java preferred way to establish a connection because a data source can keep a pool of

connections that can be re-used when necessary. This makes establishing connections much faster once

it was done for the first time.

CONNECT provide additional wrappers that are included in the JavaWrappers.jar file. The source of

these files areis located in the CONNECT source directory. The wrapper to use can be specified in the

global variable connect_java_wrapper, which defaults to “JdbcInterface”.

It can also be specified for a table in the option list by setting the option wrapper to its name. For instance:

create table jboys

engine=CONNECT table_type=JDBC tabname='boys'

connection='jdbc:mariadb://localhost/connect?user=root&useSSL=false'

option_list='Wrapper=MariadbInterface,Scrollable=1';

They can be used instead of the standard JdbcInterface and are using created data sources.

The Apache one uses data sources implemented by the Apache-commons-dbcp2 package and can be

used with all drivers including those not implementing data sources. However, the Apache package must

be installed and its three required jar files accessible via the class path:

1. Commons-dbcp2-2.1.1.jar

2. Commons-pool2-2.4.2.jar

3. Commons-logging-1.2.jar

1. commons-dbcp2-2.1.1.jar
2. commons-pool2-2.4.2.jar

Note: the versions numbers can be different on your installation.

The other ones use data sources provided by the matching JDBC driver. There are currently four wrappers

to be used with mysql-6.0.2, MariaDB, Oracle and PostgreSQL.

Unlike the class path, the used wrapper can be changed even after the JVM machine was created,

providing the required jar files are existing and specified in the class path.

Random Access to JDBC Tables

The same methods described for ODBC tables can be used with JDBC tables.

Note that in the case of the MySQL or MariaDB connectors, because they internally read the whole result

set in memory, using the MEMORY option would be a waste of memory. It is much better to specify the

use of a scrollable cursor when needed.

Other Operations with JDBC Tables

Except for how the connection string is specified and the table type set to JDBC, all operations with

ODBC tables are done for JDBC tables the same way. Refer to the ODBC chapter to know about:

• Accessing specified views (SRCDEF)

• CRUD operations.

• Sending commands to a data source.

• JDBC catalog information.

Note: Some JDBC drivers fail when the global time_zone variable is ambiguous, which sometimes

happens when it is set to SYSTEM. If so, reset it to a not ambiguous value, for instance:

set global time_zone = '+2:00';

- 107 -

JDBC specific restrictions

Connecting via data sources created externally (for instance using Tomcat) is not supported yet.

Other restrictions are the same as for the ODBC table type.

Handling the UUID Data Type

PostgreSQL has a native UUID data type, internally stored as BIN(16). This is neither a SQL nor a

MariaDB data type. The best we can do is to handle it by its character representation.

UUID will be translated to CHAR(36) when column definitions are set using discovery. Locally a

PostgreSQL UUID column will be handled like a CHAR or VARCHAR column. Example:

Using the PostgreSQL table testuuid in the text database:

 Table « public.testuuid »

 Column | Type | Default

--------+------+--------------------

 id | uuid | uuid_generate_v4()

 msg | text |

Its column definitions can by queried by:

create or replace table juuidcol engine=connect

table_type=JDBC tabname=testuuid catfunc=columns

connection='jdbc:postgresql:test?user=postgres&password=pwd';

select table_name "Table", column_name "Column", data_type

"Type", type_name "Name", column_size "Size" from juuidcol;

This query returns:

Table Column Type Name Size

testuuid id 1111 uuid 2147483647

testuuid msg 12 text 2147483647

Note: PostgreSQL, when a column size is undefined, returns 2147483647, which is not acceptable for

MariaDB. CONNECT change it to the value of the connect_conv_size session variable. Also, for TEXT

columns the data type returned is 12 (SQL_VARCHAR) instead of -1 the SQL_TEXT value.

Accessing this table via JDBC by:

CREATE TABLE juuid ENGINE=connect TABLE_TYPE=JDBC TABNAME=testuuid

CONNECTION='jdbc:postgresql:test?user=postgres&password=pwd';

it will be created by discovery as:

CREATE TABLE `juuid` (

 `id` char(36) DEFAULT NULL,

 `msg` varchar(8192) DEFAULT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1

CONNECTION='jdbc:postgresql:test?user=postgres&password=pwd'

`TABLE_TYPE`='JDBC' `TABNAME`='testuuid';

Note: 8192 being here the _connect_conv_size_ value.

Let's populate it:

- 108 -

insert into juuid(msg) values('First');

insert into juuid(msg) values('Second');

select * from juuid;

Result:

id msg

4b173ee1-1488-4355-a7ed-62ba59c2b3e7 First

6859f850-94a7-4903-8d3c-fc3c874fc274 Second

Here the id column values come from the DEFAULT of the PostgreSQL column that was specified as

uuid_generate_v4().

It can be set from MariaDB. For instance:

insert into juuid

 values('2f835fb8-73b0-42f3-a1d3-8a532b38feca','inserted');

insert into juuid values(NULL,'null');

insert into juuid values('','random');

select * from juuid;

Result:

id msg

4b173ee1-1488-4355-a7ed-62ba59c2b3e7 First

6859f850-94a7-4903-8d3c-fc3c874fc274 Second

2f835fb8-73b0-42f3-a1d3-8a532b38feca inserted

<null> null

8fc0a30e-dc66-4b95-ba57-497a161f4180 random

The first insert specifies a valid UUID character representation. The second one set it to NULL. The third

one (a void string) generates a Java random UUID. UPDATE commands obey the same specification.

These commands both work:

select * from juuid where id = '2f835fb8-73b0-42f3-a1d3-8a532b38feca';

delete from juuid where id = '2f835fb8-73b0-42f3-a1d3-8a532b38feca';

However, this one fails:

select * from juuid where id like '%42f3%';

Saying:

1296: Got error 174 'ExecuteQuery:

org.postgresql.util.PSQLException:

ERROR: operator does not exist: uuid ~~ unknown

hint: no operator corresponds to the data name and to the

argument types.

because CONNECT cond_push feature added the WHERE clause to the query sent to PostgreSQL:

SELECT id, msg FROM testuuid WHERE id LIKE '%42f3%'

and the LIKE operator does not apply to UUID in PostgreSQL.

- 109 -

To handle this, a new session variable was added to CONNECT: connect_cond_push. It permits to

specify if cond_push is enable or not for CONNECT and defaults to 1 (enabled). In this case, you can

execute:

set connect_cond_push=0;

Doing so, the where clause will be executed by MariaDB only and the query will not fail anymore.

Executing the JDBC tests

Four tests exist but they are disabled because requiring some work to localized them according to the

operating system and available java package and JDBC drivers and DBMS.

Two of them, jdbc.test and jdbc_new.test, are accessing MariaDB via JDBC drivers that are contained

in a fat jar file that is part of the test. They should be executable without anything to do on Windows;

simply adding the option –enable-disabled when running the tests.

However, on Linux these tests can fail to locate the JVM library. Before executing them, you should

export the JAVA_HOME environment variable set to the prefix of the java installation or export the

LD_LIBRARY_PATH containing the path to the JVM lib.

MONGO Table Type: Accessing Collections from MongoDB
Note: The source files of this new type were currently distributed only with MariaDB version 10.1,

10.2 and 10.3. This MONGO type was available only when compiling MariaDB from source

with:cmake -DCONNECT_WITH_MONGO=ON

Such a version will not be rated GA anymore.

Starting with CONNECT version 1.06.005 that will be distributed with all MariaDB versions released

after October 1st 2017, the MONGO table type will be also available with binary distributions supporting

JDBC. However, this version of CONNECT being rated as GA (stable), the MONGO table type will be

disabled for MariaDB versions 10.0 and 10.1, not being thoroughly tested yet. It is still possible to enable

it, for testing or use at user’s risk, when compiling MariaDB from source with the option :
CONNECT_WITH_MONGO ON.

Classified as a NoSQL database program, MongoDB uses JSON-like documents (BSON) grouped in

collections. The MONGO type is used to directly access MongoDB collections as tables.

Accessing MongoDB from CONNECT can be done in different ways:

1. As a MONGO table via the MongoDB C Driver.

2. As a MONGO table via the MongoDB Java Driver.

3. As a JDBC table using some commercially available MongoDB JDBC drivers.

4. As a JSON table via the MongoDB C or Java Driver.

Using the MongoDB C Driver

This is currently not available from binary distributions but only for versions compiled from source. The

preferred versions of the MongoDB C Driver start from 1.7 because they provide package recognition.

What must be done is:

1. Install libbson and the MongoDB C Driver.

2. Configure, compile and install MariaDB.

With earlier versions of the Mongo C Driver, the additional include directories and libraries will have to

be specified manually when compiling.

When possible, this is the preferred access way because it does not require all the java path settings et

because it is faster than using the java driver.

https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/JSON

- 110 -

Using the Mongo Java Driver

This is available with all distributions including JDBC support when compiling from source or from a

1.2 or 10.3 binary distribution29. The only additional things to do are:

1. Install the MongoDB Java Driver by downloading its jar file. Several versions are available. If

possible use the latest version 3 one.

2. Add the path to it in the CLASSPATH environment variable or in the connect_class_path

variable. This is like what is done to declare JDBC drivers.

Connection is established by new Java wrappers Mongo3Interface and Mongo2Interface. They are

available in a JDBC distribution in the JavaWrappers.jar file. If version 2 of the Java Driver is used,

specify “Version=2” in the option list when creating tables.

Using JDBC

See the documentation of the existing commercial JDBC MongoDB drivers.

Using JSON

See the specific chapter of the JSON Table Type.

The following describes the MONGO table type.

CONNECT MONGO Tables

Creating and running MONGO tables requires a connection to a running local or remote MongoDB

server.

A MONGO table is defined to access a MongoDB collection. The table rows will be the collection

documents. For instance, to create a table based on the MongoDB sample collection restaurants, you can

do something such as the following:

create table resto (

_id varchar(24) not null,

name varchar(64) not null,

cuisine char(200) not null,

borough char(16) not null,

restaurant_id varchar(12) not null)

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8 connection='mongodb://localhost:27017';

Note: The used driver is by default the C driver if only the MongoDB C Driver is installed and the Java

driver if only the MongoDB Java Driver is installed. If both are available, it can be specified by the

DRIVER option to be specified in the option list and defaults to C.

Here we did not define all the items of the collection documents but only those that are JSON values.

The database is test by default. The connection value is the URI used to establish a connection to a local

or remote MongoDB server. The value shown in this example corresponds to a local server started with

its default port. It is the default connection value for MONGO tables so we could have omit specifying

it.

Using discovery is available. This table could have been created by:

create table resto

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8 option_list='level=-1';

Here “level=-1” is used to create only columns that are simple values (no array or object). Without this,

with the default value “level=0” the table had been created as:

29 With a binary distribution that does not enable the MONGO table type, it is possible to access

MongoDB using an OEM module. See Appendix B for details.

- 111 -

CREATE TABLE `resto` (

 `_id` char(24) NOT NULL,

 `address` varchar(136) NOT NULL,

 `borough` char(13) NOT NULL,

 `cuisine` char(64) NOT NULL,

 `grades` varchar(638) NOT NULL,

 `name` char(98) NOT NULL,

 `restaurant_id` char(8) NOT NULL

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='MONGO'

`TABNAME`='restaurants' `DATA_CHARSET`='utf8';

In this collection, the address column is a JSON object and the column grades is a JSON array. Unlike

the JSON table type, just specifying the column name with no Jpath result in displaying the JSON

representation of them. For instance:

select name, address from resto limit 3;

name address

Morris Park Bake Shop {"building":"1007","coord":[-73.8561,40.8484], "street":"Morris ParkAve", "zipcode":"10462"}

Wendy'S {"building":"469","coord":[-73.9617,40.6629], "street":"Flatbush Avenue", "zipcode":"11225"}

Reynolds Restaurant {"building":"351","coord":[-73.9851,40.7677], "street":"West 57Street", "zipcode":"10019"}

MongoDB Dot Notation

To address the items inside object or arrays, specify the Jpath in MongoDB syntax30:

create table newresto (

_id varchar(24) not null,

name varchar(64) not null,

cuisine char(200) not null,

borough char(16) not null,

street varchar(65) field_format='address.street',

building char(16) field_format='address.building',

zipcode char(5) field_format='address.zipcode',

grade char(1) field_format='grades.0.grade',

score int(4) not null field_format='grades.0.score',

`date` date field_format='grades.0.date',

restaurant_id varchar(255) not null)

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8 connection='mongodb://localhost:27017';

select name, street, score, date from newresto limit 5;

name street score date

Morris Park Bake Shop Morris Park Ave 2 03/03/2014

Wendy'S Flatbush Avenue 8 30/12/2014

Dj Reynolds Pub And Restaurant West 57 Street 2 06/09/2014

Riviera Caterer Stillwell Avenue 5 10/06/2014

Tov Kosher Kitchen 63 Road 20 24/11/2014

30 If using Discovery, specify the Level option accordingly.

- 112 -

MONGO Specific Options

The MongoDB syntax for Jpath does not allow the CONNECT specific items on arrays. The same effect

can still be obtained by a different way. For this, additional options are used when creating MONGO

tables.

Option Type Description

Colist String Options to pass to the MongoDB cursor.

Filter String Query used by the MongoDB cursor.

Pipeline* Boolean If True, Colist is a pipeline.

Fullarray*Error! Bookmark not defined.0 Boolean Used when creating with Discovery.

Driver* String C or Java.

Version* Integer The Java Driver version (defaults to 3)

*: To be specified in the option list.

Note: For the content of the three first options, refer to the MongoDB documentation.

Colist Option

Used to pass different options when making the MongoDB cursor used to retrieve the collation

documents. One of them is the projection, allowing to limit the items retrieved in documents. It is hardly

useful because this limitation is made automatically by CONNECT. However, it can be used when using

discovery to eliminate the _id (or another) column when you are not willing to keep it:

create table restest

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8 option_list='level=-1'

colist='{"projection":{"_id":0,"limit":5}}';

In this example, we added another cursor option, the limit option that works like the limit SQL clause.

This additional option works only with the C driver. When using the Java driver, colist should be:

colist='{"_id":0}';

And limit would be specified with select statements.

Filter Option

This option is used to specify a “filter” that works as a where clause on the table. Supposing we want to

create a table restricted to the restaurant making English cuisine that are not located in the Manhattan

borough, we can do it by:

create table english

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8

colist='{"projection":{"cuisine":0}}'

filter='{"cuisine":"English","borough":{"$ne":"Manhattan"}}'

option_list='Level=-1';

And if we ask:

select * from english;

This query will return:

_id borough name restaurant_id

- 113 -

58ada47de5a51ddfcd5ee1f3 Brooklyn The Park Slope Chipshop 40816202

58ada47de5a51ddfcd5ee999 Brooklyn Chip Shop 41076583

58ada47ee5a51ddfcd5f13d5 Brooklyn The Monro 41660253

58ada47ee5a51ddfcd5f176e Brooklyn Dear Bushwick 41690534

58ada47ee5a51ddfcd5f1e91 Queens Snowdonia Pub 50000290

Pipeline Option

When this option is specified as true (by YES or 1) the Colist option contains a MongoDB pipeline

applying to the table collation. This is a powerful mean for doing things such as expanding arrays like

we do with JSON tables. For instance:

create table resto2 (

name varchar(64) not null,

borough char(16) not null,

date datetime not null,

grade char(1) not null,

score int(4) not null)

engine=connect table_type=MONGO tabname='restaurants'

data_charset=utf8

colist='{"pipeline":[{"$match":{"cuisine":"French"}},{"$unwind

":"$grades"},{"$project":{"_id":0,"name":1,"borough":1,"date":

"$grades.date","grade":"$grades.grade","score":"$grades.score"

}}]}'

option_list='Pipeline=1';

In this pipeline “$match” is an early filter, “$unwind” means that the grades array will be expanded (one

Document for each array values) and “$project” eliminates the _id and cuisine columns and gives the

Jpath for the date, grade and score columns.

select name, grade, score, date from resto2

where borough = 'Bronx';

This query replies:

name grade score date

Bistro Sk A 10 21/11/2014 01:00:00

Bistro Sk A 12 19/02/2014 01:00:00

Bistro Sk B 18 12/06/2013 02:00:00

This make possible to get things like we do with JSON tables:

select name, avg(score) average from resto2

group by name having average >= 25;

Can be used to get the average score inside the grades array.

name average

Bouley Botanical 25,0000

Cheri 46,0000

Graine De Paris 30,0000

Le Pescadeux 29,7500

- 114 -

Fullarray Option

This option, like the Level option, is only interpreted when creating a table with Discovery (meaning not

specifying the columns). It tells CONNECT to generate a column for all existing values in the array. For

instance, let us see the MongoDB collection tar by:

create table seetar (

Collection varchar(300) not null field_format='*')

engine=CONNECT table_type=MONGO tabname=tar;

The format ‘*’ indicates we want to see the Json documents. This small collection is:

Collection

{"_id":{"$oid":"58f63a5099b37d9c930f9f3b"},"item":"journal","prices":[87.0,45.0,63.0,12.0,78.0

]}

{"_id":{"$oid":"58f63a5099b37d9c930f9f3c"},"item":"notebook","prices":[123.0,456.0,789.0]}

The Fullarray option can be used here to generate enough columns to see all the prices of the

document prices array.

create table tar

engine=connect table_type=MONGO

colist='{"projection":{"_id":0}}'

option_list='level=1,Fullarray=YES';

The table has been created as:

CREATE TABLE `tar` (

 `item` char(8) NOT NULL,

 `prices_0` double(12,6) NOT NULL `FIELD_FORMAT`='prices.0',

 `prices_1` double(12,6) NOT NULL `FIELD_FORMAT`='prices.1',

 `prices_2` double(12,6) NOT NULL `FIELD_FORMAT`='prices.2',

 `prices_3` double(12,6) DEFAULT NULL `FIELD_FORMAT`='prices.3',

 `prices_4` double(12,6) DEFAULT NULL `FIELD_FORMAT`='prices.4'

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='MONGO'

`COLIST`='{"projection":{"_id":0}}'

`OPTION_LIST`='level=1,Fullarray=YES';

And is displayed as:

item prices_0 prices_1 prices_2 prices_3 prices_4

journal 87.00 45.00 63.00 12.00 78.00

notebook 123.00 456.00 789.00 NULL NULL

CRUD Operations

All modifying operations are supported. However, updating or inserting into arrays must be done in a

specific way. Like with the Fullarray option, we must have enough columns to specify the array

values. For instance, we can create a new table by:

create table testin (

n int not null,

m char(12) not null,

surname char(16) not null field_format='person.name.first',

name char(16) not null field_format='person.name.last',

age int(3) not null field_format='person.age',

price_1 double(8,2) field_format='d.0',

price_2 double(8,2) field_format='d.1',

- 115 -

price_3 double(8,2) field_format='d.2')

engine=connect table_type=MONGO tabname='tin'

connection='mongodb://localhost:27017';

Now it is possible to populate it by:

insert into testin values

(1789, 'Welcome', 'Olivier','Bertrand',56, 3.14, 2.36, 8.45),

(1515, 'Hello', 'John','Smith',32, 65.17, 98.12, NULL),

(2014, 'Coucou', 'Foo','Bar',20, NULL, 74, 81356);

The result will be:

n m surname name age price_1 price_2 price_3

1789 Welcome Olivier Bertrand 56 3,14 2,36 8,45

1515 Hello John Smith 32 65,17 98,12 NULL

2014 Coucou Foo Bar 20 NULL 74 81356

Note: If the collection does not exist yet when creating the table and inserting in it, MongoDB creates it

automatically.

It can be updated by queries such as:

update testin set price_3 = 83.36 where n = 2014;

To look how the array is generated, let us create another table:

create table tintin (

n int not null,

name char(16) not null field_format='person.name.first',

prices varchar(255) field_format='d')

engine=connect table_type=MONGO tabname='tin';

This table is displayed as:

_id name prices

1789 Olivier [3.14, 2.36, 8.45]

1515 John [65.17, 98.12]

2014 Foo [<null>, 74.0, 83.36]

Note: This last table can be used to make array calculations like with JSON tables using the JSON UDF

functions. For instance:

select name, jsonget_real(prices,'[+]') sum_prices,

jsonget_real(prices,'[!]') avg_prices from tintin;

This query returns:

name sum_prices avg_prices

Olivier 13.95 4.65

John 163.29 81.64

Foo 157,36 78.68

Note: When calculating on arrays, null values are ignored.

- 116 -

Status of MONGO Table Type

This table type is still under development. It has significant advantages over the JSON type to access

MongoDB collections. Firstly, the access being direct, tables are always up to date if the collection has

been modified by another application. Performance wise, it is much faster than JSON, because most

processing is done by MongoDB on BSON, its internal representation of JSON data, which is designed

to optimize all operations. Note that using the MongoDB C Driver is about twice as fast as using the

MongoDB Java Driver.

Current Restrictions

Option “CATFUNC=tables” is not implemented yet.

Options SRCDEF and EXECSRC do not apply to MONGO tables.

MYSQL Table Type: Accessing MySQL/MariaDB Tables
This table type uses the libmysql API to access a MySQL or MariaDB table or view. This table must be

created on the current server or on another local or remote server. This is like what the FEDERATED

storage engine provides with some differences.

Currently the FEDERATED like syntax can be used to create such a table, for instance:

create table essai (

num integer(4) not null,

line char(15) not null)

engine=CONNECT table_type=MYSQL

connection='mysql://root@localhost/test/people';

The connection string can have the same syntax than the one used by FEDERATED31:

scheme://username:password@hostname:port/database/tablename

scheme://username@hostname/database/tablename

scheme://username:password@hostname/database/tablename

However, it can also be mixed with CONNECT standard options. For instance:

create table essai (

num integer(4) not null,

line char(15) not null)

engine=CONNECT table_type=MYSQL dbname=test tabname=people

connection='mysql://root@localhost';

The pure (deprecated) CONNECT syntax is still accepted:

create table essai (

num integer(4) not null,

line char(15) not null)

engine=CONNECT table_type=MYSQL dbname=test tabname=people

option_list='user=root,host=localhost';

The specific connection options are:

Option Default value Description

Tabname The table name The name of the table to access.

Dbname The current DB name The database where the table is located.

31 It can also be specified as a reference to a federated server:
connection="connection_one"

connection="connection_one/table_foo"

- 117 -

Option Default value Description

Host localhost* The host of the server, a name or an IP address.

User The current user The connection user name.

Password No password An optional user password.

Port The currently used port The port of the server.

Quoted 0 1 if remote Tabname must be quoted.

*: When the host is specified as “localhost”, the connection is established on Linux using Linux sockets.

On Windows, the connection is established by default using share memory if it is enabled. If not, the

TCP protocol is used. An alternative is to specify the host as “.” to use a named pipe connection (if it is

enabled). This makes possible to use these table types with server skipping networking.

Caution: Take care not to refer to the MYSQL table itself to avoid an infinite loop!

MYSQL table can refer to the current server as well as to another server. Views can be referred by name

or directly giving a source definition, for instance:

create table grp engine=connect table_type=mysql

CONNECTION='mysql://root@localhost/test/people'

SRCDEF='select title, count(*) as cnt from employees group by title';

When specified, the columns of the MYSQL table must exist in the accessed table with the same name,

but can be only a subset of them and specified in a different order. Their type must be a type supported

by CONNECT and, if it is not identical to the type of the accessed table matching column, a conversion

can be done using the rules given in Data type conversion.

Note: For columns prone to be targeted by a WHERE clause, keep the column type compatible with the

source table column type (numeric or character) to have a correct rephrasing of the WHERE clause.

If you do not want to restrict or change the column definition, do not provide it and leave CONNECT

get the column definition from the remote server. For instance:

create table essai engine=CONNECT table_type=MYSQL

connection='mysql://root@localhost/test/people';

This will create the essai table with the same columns than the people table. If the target table contains

CONNECT incompatible type columns, see Data type conversion to know how these columns can be

converted or skipped.

Charset Specification

When accessing the remote table, CONNECT sets the connection charset set to the default local table

charset as the FEDERATED engine does.

Do not specify a column character set if it is different from the table default character set even when it is

the case on the remote table. This is because the remote column is translated to the local table character

set when reading it32. If it must keep its setting, for instance to UTF8 when containing Unicode characters,

specify the local default charset to its character set.

This means that it is not possible to correctly retrieve a remote table if it contains columns having

different character sets. A solution is to retrieve it by several local tables, each accessing only columns

with the same character set.

32This is the default but it can be modified by the setting of the variable ‘character_set_results’ of the

target server.

- 118 -

Indexing of MYSQL Tables

Indexes are rarely useful with MYSQL tables. This is because CONNECT tries to access only the

requested rows. For instance, if you ask:

select * from essai where num = 23;

CONNECT will construct and send to the server the query:

SELECT num, line FROM people WHERE num = 23

If the people table is indexed on num, indexing will be used on the remote server. This, in all cases, will

limit the amount of data to retrieve on the network.

However, an index can be specified for columns that are prone to be used to join another table to the

MYSQL table because there are no where clauses permitting to reduce the fetched rows. For instance:

select d.id, d.name, f.dept, f.salary

from loc_tab d straight_join cnc_tab f on d.id = f.id

where f.salary > 10000;

If the id column of the remote table addressed by the cnc_tab MYSQL table is indexed (which is likely

if it is a key) you should also index the id column of the MYSQL cnc_tab table. If so, using “remote”

indexing as does FEDERATED, only the useful rows of the remote table will be retrieved during the join

process. However, because these rows are retrieved by separate SELECT statements, this will be useful

only when retrieving a few rows of a big table.

In particular, you should not specify an index for columns not used for joining and above all DO NOT

index a joined column if it is not indexed in the remote table. This would cause multiple scans of the

remote table to retrieve the joined rows one by one.

CRUD Operations

The CONNECT MYSQL type supports SELECT and INSERT and a somewhat limited form of UPDATE and

DELETE. The MYSQL type uses similar methods than the ODBC type to implement the INSERT, UPDATE

and DELETE commands. Refer to the ODBC chapter for the restrictions concerning them.

For the UPDATE and DELETE commands, there are fewer restrictions because the remote server being a

MySQL server, the syntax of the command will be always acceptable by both servers.

For instance, you can freely use keywords like IGNORE or LOW_PRIORITY as well as scalar functions in

the SET and WHERE clauses.

However, there is still an issue on multi-table statements. Let us suppose you have a t1 table on the

remote server and want to execute a query such as:

update essai as x set line = (select msg from t1 where id = x.num)

where num = 2;

When parsed locally, you will have errors if no t1 table exists or if it does not have the referenced

columns. When t1 does not exist, you can overcome this issue by creating a local dummy t1 table:

create table t1 (id int, msg char(1)) engine=BLACKHOLE;

This will make the local parser happy and permit to execute the command on the remote server. Note

however that having a local MYSQL table defined on the remote t1 table does not solve the problem

unless it is also names t1 locally.

Therefore, to permit to have all types of commands executed by the data source without any restriction,

CONNECT provides a specific MYSQL table subtype described now.

- 119 -

Sending commands to a MySQL Server

This can be done like for ODBC or JDBC tables by defining a specific table that will be used to send

commands and get the result of their execution.

create table send (

command varchar(128) not null,

warnings int(4) not null flag=3,

number int(5) not null flag=1,

message varchar(255) flag=2)

engine=connect table_type=mysql

connection='mysql://user@host/database'

option_list='Execsrc=1,Maxerr=2';

The key points in this create statement are the EXECSRC option and the column definition.

The EXECSRC option tells that this table will be used to send commands to the MySQL server. Most of

the sent commands do not return result set. Therefore, the table columns are used to specify the command

to be executed and to get the result of the execution. The name of these columns can be chosen arbitrarily,

their function coming from the FLAG value:

Flag=0: The command to execute (the default)

Flag=1: The number of affected rows, or the result number of columns if the command would return a

result set.

Flag=2: The returned (eventually error) message.

Flag=3: The number of warnings.

How to use this table and specify the command to send? By executing a command such as:

select * from send where command = 'a command';

This will send the command specified in the WHERE clause to the data source and return the result of its

execution. The syntax of the WHERE clause must be exactly as shown above. For instance:

select * from send where command =

'CREATE TABLE people (

num integer(4) primary key autoincrement,

line char(15) not null';

This command returns:

command warnings number message

CREATE TABLE people (num integer(4) primary key

aut…

0 0 Affected

rows

Sending several commands in one call

It can be faster to execute because there will be only one connection for all of them. To send several

commands in one call, use the following syntax:

select * from send where command in (

"update people set line = 'Two' where id = 2",

"update people set line = 'Three' where id = 3");

When several commands are sent, the execution stops at the end of them or after a command that is in

error. To continue after n errors, set the option maxerr = n (0 by default) in the option list.

Note 1: It is possible to specify the SRCDEF option when creating an EXECSRC table. It will be the

command sent by default when a WHERE clause is not specified.

- 120 -

Note 2: Backslashes inside commands must be escaped. Simple quotes must be escaped if the command

is specified between simple quotes, and double quotes if it is specified between double quotes.

Note 3: Sent commands apply in the specified database. However, they can address any table within this

database.

Note 4: Currently, all commands are executed in mode AUTOCOMMIT.

Retrieving Warnings and Notes

If a sent command causes warnings to be issued, it is useless to resend a “show warnings” command

because the MySQL server is opened and closed when sending commands. Therefore, getting warnings

requires a specific (and tricky) way.

To indicate that warning text must be added to the returned result, you must send a multi-command query

containing “pseudo” commands that are not sent to the server but directly interpreted by the EXECSRC

table. These “pseudo” commands are:

Warning To get warnings

Note To get notes

Error To get errors returned as warnings (?)

Note that they must be spelled (case insensitive) exactly as above, no final “s”. For instance:

select * from send where command in ('Warning','Note',

'drop table if exists try',

'create table try (id int key auto_increment, msg varchar(32) not

null) engine=aria',

"insert into try(msg) values('One'),(NULL),('Three') ",

"insert into try values(2,'Deux') on duplicate key update msg =

'Two'",

"insert into try(message) values('Four'),('Five'),('Six')",

'insert into try(id) values(NULL)',

"update try set msg = 'Four' where id = 4",

'select * from try');

This can return something like this:

command warnings number message

drop table if exists try 1 0 Affected rows

Note 0 1051 Unknown table 'try'

create table try (id int key auto_increment, msg… 0 0 Affected rows

insert into try(msg) values('One'),(NULL),('Three') 1 3 Affected rows

Warning 0 1048 Column 'msg' cannot be null

insert into try values(2,'Deux') on duplicate key… 0 2 Affected rows

insert into try(msge) values('Four'),('Five'),('Six') 0 1054 Unknown column 'msge' in 'field list'

insert into try(id) values(NULL) 1 1 Affected rows

Warning 0 1364 Field 'msg' doesn't have a default value

update try set msg = 'Four' where id = 4 0 1 Affected rows

select * from try 0 2 Result set columns

The execution continued after the command in error because of the MAXERR option. Normally this would

have stopped the execution.

Of course, the last “select” command is useless here because it cannot return the table contain. Another

MYSQL table without the EXECSRC option and with proper column definition should be used instead.

- 121 -

Connection Engine Limitations

Data types

There is a maximum key.index length of 255 bytes. You may be able to declare the table without an

index and rely on the engine condition pushdown and remote schema.

The following types can't be used:

• BIT

• BINARY

• TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB

• TINYTEXT, MEDIUMTEXT, LONGTEXT

• Geometry types

Note 1: TEXT is allowed. However, the handling depends on the values given to the connect_type_conv

and connect_conv_size system variables, and by default no conversion of TEXT columns is permitted.

Note 2: ENUM and SET types are retrieved as char or varchar types. Unlike with the original table, they

cannot be used in clauses involving their numeric value. However, comma separated values from a SET

column are a good candidate for XCOL tables.

SQL Limitations

The following SQL queries are not supported

• REPLACE INTO

• INSERT ... ON DUPLICATE KEY UPDATE

CONNECT MYSQL versus FEDERATED

The CONNECT MYSQL table type should not be regarded as a replacement for the FEDERATED(X)

engine. The main use of the MYSQL type is to access other engine local tables as if they were CONNECT

tables. This was necessary when accessing tables from some CONNECT table types such as TBL,

XCOL, OCCUR, or PIVOT that are designed to access CONNECT tables only. When their target table

is not a CONNECT table, these types are silently using internally an intermediate MYSQL table.

However, there are cases where you can use MYSQL CONNECT tables yourself, for instance:

1. When the table will be used by a TBL table. This enables you to specify the connection

parameters for each sub-table and is more efficient than using a local FEDERATED sub-table.

2. When the desired returned data is directly specified by the SRCDEF option. This is great to let

the remote server do most of the job, such as grouping and/or joining tables. This cannot be

done with the FEDERATED engine.

3. To take advantage of the push_cond facility that adds a where clause to the command sent to

the remote table. This restricts the size of the result set and can be crucial for big tables. See the

details of this in the ODBC table type.

4. For tables with the EXECSRC option on.

5. When doing tests. For instance, to check a connection string.

If you need multi-table updating, deleting, or bulk inserting on a remote table, you can alternatively use

the FEDERATED engine or a “send” table specifying the EXECSRC option on.

PROXY Table Type
A PROXY table is a table that access and read the data of another table or view. For instance, to create a

table based on the boys FIX table:

create table xboy engine=connect table_type=PROXY tabname=boys;

Simply, PROXY being the default type when TABNAME is specified:

https://mariadb.com/kb/en/bit/
https://mariadb.com/kb/en/binary/
https://mariadb.com/kb/en/tinyblob/
https://mariadb.com/kb/en/blob/
https://mariadb.com/kb/en/mediumblob/
https://mariadb.com/kb/en/longblob/
https://mariadb.com/kb/en/tinytext/
https://mariadb.com/kb/en/mediumtext/
https://mariadb.com/kb/en/longtext/
https://mariadb.com/kb/en/geometry-types/
https://mariadb.com/kb/en/text/
https://mariadb.com/kb/en/connect-system-variables/#connect_type_conv
https://mariadb.com/kb/en/connect-system-variables/#connect_conv_size
https://mariadb.com/kb/en/replace/
https://mariadb.com/kb/en/insert-on-duplicate-key-update/

- 122 -

create table xboy engine=connect tabname=boys;

Because the boys table can be directly used, what can be the use of a proxy table? Well, its main use is

to be internally used by other table types such as TBL, XCOL, OCCUR, or PIVOT. Indeed, PROXY table

are CONNECT tables, meaning that they can be based on tables of any engines and accessed by table

types that can to access only CONNECT tables.

Proxy on not CONNECT Tables

When the sub-table is a view or a not CONNECT table, CONNECT internally creates a temporary

CONNECT table of MYSQL type to access it. This connection is using the same default parameters than

for a MYSQL table. It is also possible to specify them to the PROXY table using in the PROXY declaration

the same OPTION_LIST options than for a MYSQL table. Of course, it is simpler and more natural to use

directly the MYSQL type in this case.

Normally, the default parameters should enable the PROXY table to reconnect the server. However, an

issue is when the current user was logged using a password. The security protocol prevents CONNECT

to retrieve this password and requires it to be given in the PROXY table create statement. For instance,

adding to it:

… option_list='Password=mypass';

However, it is often not advisable to write in clear a password that can be seen by all user able to see the

table declaration by show create table; in particular, if the table is used when the current user is root. To

avoid this, a specific user should be created on the local host that will be used by proxy tables to retrieve

local tables. This user can have minimum grant options, for instance SELECT on desired directories, and

needs no password. Supposing ‘proxy’ is such a user, the option list to add will be:

… option_list='user=proxy';

Using a PROXY Table as a View

A PROXY table can also be used by itself to modify the way a table is viewed. For instance, a proxy table

does not use the indexes of the object table. It is also possible to define its columns with different names

or type, to use only some of them or to changes their order. For instance:

create table city (

city varchar(11),

boy char(12) flag=1,

birth date)

engine=CONNECT tabname=boys;

select * from city;

This will display:

city boy birth

Boston John 1986-01-25

Boston Henry 1987-06-07

San Jose George 1981-08-10

Chicago Sam 1979-11-22

Dallas James 1992-05-13

Boston Bill 1986-09-11

Here we did not have to specify column format or offset because data are retrieved from the boys table,

not directly from the boys.txt file. The flag option of the boy column indicates that it corresponds to the

first column of the boys table, the name column.

- 123 -

Avoiding PROXY table loop

CONNECT can test whether a PROXY, or PROXY based, table refers directly or indirectly to itself. If direct

reference can be tested at the table creation, indirect reference can only be tested when executing a query

on the table. However, this is possible only for local tables. When using remote tables or views, the

problem can occur if the remote table or the view refers back to one of the local tables of the chain. The

same caution should be used than when using FEDERATED tables.

Modifying Operations

All INSERT/UPDATE/DELETE operations can be used with proxy tables. However, the same restrictions

applying to the source table also apply to the proxy table.

Note: All PROXY and PROXY based table types are not indexable.

- 124 -

Virtual Table Types
These tables have no proprietary data. Some work as “views” to other tables, others retrieve data from

the operating system.

XCOL Table Type
XCOL tables are based on another table or view, like PROXY tables. This type can be used when the object

table has a column that contains a list of values. In particular, this is the case when the object table has a

column of the SET type.

Suppose we have a ‘chlist’ table that can be displayed as:

mother children

Sophia Vivian, Antony

Lisbeth Lucy,Charles,Diana

Corinne

Claude Marc

Janet Arthur,Sandra,Peter,John

We can have a different view on these data, where each child will be associated with his/her mother by

creating an XCOL table by:

CREATE TABLE xchild (

mother char(12) NOT NULL,

child char(12) DEFAULT NULL flag=2

) ENGINE=CONNECT table_type=XCOL tabname='chlist'

option_list='colname=child';

The COLNAME option specifies the name of the column receiving the list items. This will return from:

select * from xchild;

The requested view:

mother child

Sophia Vivian

Sophia Antony

Lisbeth Lucy

Lisbeth Charles

Lisbeth Diana

Corinne NULL

Claude Marc

Janet Arthur

Janet Sandra

Janet Peter

Janet John

Several things should be noted here:

• When the original children field is void, what happens depends on the NULL specification of

the “multiple” column. If it is nullable, like here, a void string will generate a NULL value.

However, if the column is not nullable, no row will be generated at all.

• Blanks after the separator are ignored.

- 125 -

• No copy of the original data was done. Both tables use the same source data.

• Specifying the column definitions in the CREATE TABLE statement is optional. When doing so,

the columns are defined with the same name and type than in the target table.

• The flag column option is the base 1 position of the matching column in the target table, to be

specified if the column name is changed.

The “multiple” column child can be used as any other column. For instance:

select * from xchild where substr(child,1,1) = 'A';

This will return:

mother child

Sophia Antony

Janet Arthur

If a query does not involve the “multiple” column, no row multiplication will be done. For instance:

select mother from xchild;

This will just return all the mothers:

mother

Sophia

Lisbeth

Corinne

Claude

Janet

The same occurs with other type of select statements, for instance:

select count(*) from xchild; returns 5;

select count(child) from xchild; returns 10

select count(mother) from xchild; returns 5

Grouping also gives different result:

select mother, count(*) from xchild group by mother;

Replies:

mother COUNT(*)

Claude 1

Corinne 1

Janet 1

Lisbeth 1

Sophia 1

While the query:

select mother, count(child) from xchild group by mother;

Gives the more interesting result:

- 126 -

mother COUNT(child)

Claude 1

Corinne 0

Janet 4

Lisbeth 3

Sophia 2

Some more options are available for this table type:

Option Description

Sep_char The separator character used in the “multiple” column, defaults to the comma.

Mult Indicates the max number of multiple items. It is used to internally calculate the max size of

the table and defaults to 10. (To be specified in OPTION_LIST).

Using Special Columns with XCOL

Special columns can be used in XCOL tables. The mostly useful one is ROWNUM that gives the rank

of the value in the list of values. For instance:

CREATE TABLE xchild2 (

rank int NOT NULL SPECIAL=ROWID,

mother char(12) NOT NULL,

child char(12) NOT NULL flag=2

) ENGINE=CONNECT table_type=XCOL tabname='chlist'

option_list='colname=child';

This table will be displayed as:

rank mother child

1 Sophia Vivian

2 Sophia Antony

1 Lisbeth Lucy

2 Lisbeth Charles

3 Lisbeth Diana

1 Claude Marc

1 Janet Arthur

2 Janet Sandra

3 Janet Peter

4 Janet John

To list only the first child of each mother you can do:

SELECT mother, child FROM xchild2 where rank = 1 ;

Returning:

mother child

Sophia Vivian

Lisbeth Lucy

Claude Marc

Janet Arthur

- 127 -

However, note the following pitfall: trying to get the names of all mothers having more than 2 children

cannot be done by:

SELECT mother FROM xchild2 where rank > 2;

This is because no row multiplication being done, the rank value is always 1. The correct way to obtain

this result is longer but cannot use the ROWNUM column:

SELECT mother FROM xchild2 group by mother having count(child) > 2;

XCOL tables based on specified views

Instead of specifying a source table name via the TABNAME option, it is possible to retrieve data from a

“view” whose definition is given in a new option SRCDEF. For instance:

create table xsvars engine=connect table_type=XCOL

srcdef='show variables like "optimizer_switch"'

option_list='Colname=Value';

Then, for instance:

select value from xsvars limit 10;

This will display something like:

value

index_merge=on

index_merge_union=on

index_merge_sort_union=on

index_merge_intersection=on

index_merge_sort_intersection=off

engine_condition_pushdown=off

index_condition_pushdown=on

derived_merge=on

derived_with_keys=on

firstmatch=on

Note: All XCOL tables are read only.

OCCUR Table Type
Like the XCOL table type, OCCUR is an extension to the PROXY type when referring to a table or view

having several columns containing the same kind of data. It enables having a different view of the table

where the data from these columns are put in a single column, eventually causing several rows to be

generated from one row of the object table. For example, supposing we have the pets table:

name dog cat rabbit bird fish

John 2 0 0 0 0

Bill 0 1 0 0 0

Mary 1 1 0 0 0

Lisbeth 0 0 2 0 0

Kevin 0 2 0 6 0

Donald 1 0 0 0 3

We can create an occur table by:

- 128 -

create table xpet (

name varchar(12) not null,

race char(6) not null,

number int not null)

engine=connect table_type=occur tabname=pets

option_list='OccurCol=number,RankCol=race'

Colist='dog,cat,rabbit,bird,fish';

When displaying it by

select * from xpet;

We will get the result:

name race number

John dog 2

Bill cat 1

Mary dog 1

Mary cat 1

Lisbeth rabbit 2

Kevin cat 2

Kevin bird 6

Donald dog 1

Donald fish 3

First, the values of the column listed in the Colist option have been put in a unique column whose name

is given by the OccurCol option. When several columns have non-null (or pseudo-null) values, several

rows are generated, with the other normal columns values repeated.

In addition, an optional special column was added whose name is given by the RankCol option. This

column contains the name of the source column from which the value of the OccurCol column comes

from. It permits here to know the race of the pets whose number is given in number.

This table type permit to make queries that would be more complicated to make on the original tables.

For instance, to know who as more than 1 pet of a kind, you can simply ask:

select * from xpet where number > 1;

You will get the result:

name race number

John dog 2

Lisbeth rabbit 2

Kevin cat 2

Kevin bird 6

Donald fish 3

Note 1: Like for XCOL tables, no row multiplication for queries not implying the Occur column. It is also

possible to use the ROWNUM special column with similar result.

- 129 -

Note 2: Because the OccurCol was declared “not null” no rows were generated for null or pseudo-null

values of the column list. If the OccurCol is declared as nullable, rows are also generated for columns

containing null or pseudo-null values.

Occur tables can be also defined from views or source definition. CONNECT is also able to generate the

column definitions if not specified. For example:

create table ocsrc engine=connect table_type=occur

colist='january,february,march,april,may,june,july,august,september,

october,november,december' option_list='rankcol=month,occurcol=day'

srcdef='select ''Foo'' name, 8 january, 7 february, 2 march, 1 april,

 8 may, 14 june, 25 july, 10 august, 13 september, 22 october, 28

 november, 14 december';

This table is displayed as:

name month day

Foo january 8

Foo february 7

Foo march 2

Foo april 1

Foo may 8

Foo june 14

Foo july 25

Foo august 10

Foo september 13

Foo october 22

Foo november 28

Foo december 14

Note: All OCCUR tables are read only.

PIVOT Table Type
This table type can be used to transform the result of another table or view (called the source table) into

a pivoted table along “pivot” and “facts” columns. A pivot table is a great reporting tool that sorts and

sums (by default) independent of the original data layout in the source table.

For example, let us suppose you have the following “Expenses” table:

Who Week What Amount

Joe 3 Beer 18.00
Beth 4 Food 17.00
Janet 5 Beer 14.00
Joe 3 Food 12.00
Joe 4 Beer 19.00
Janet 5 Car 12.00
Joe 3 Food 19.00
Beth 4 Beer 15.00
Janet 5 Beer 19.00
Joe 3 Car 20.00
Joe 4 Beer 16.00

- 130 -

Beth 5 Food 12.00
Beth 3 Beer 16.00
Joe 4 Food 17.00
Joe 5 Beer 14.00
Janet 3 Car 19.00
Joe 4 Food 17.00
Beth 5 Beer 20.00
Janet 3 Food 18.00
Joe 4 Beer 14.00
Joe 5 Food 12.00
Janet 3 Beer 18.00
Janet 4 Car 17.00
Janet 5 Food 12.00

Pivoting the table contents using the 'Who' and 'Week' fields for the left columns, and the 'What' field for

the top heading and summing the 'Amount' fields for each cell in the new table, gives the following

desired result:

Who Week Beer Car Food

Beth 3 16.00 0.00 0.00

Beth 4 15.00 0.00 17.00

Beth 5 20.00 0.00 12.00

Janet 3 18.00 19.00 18.00

Janet 4 0.00 17.00 0.00

Janet 5 33.00 12.00 12.00

Joe 3 18.00 20.00 31.00

Joe 4 49.00 0.00 34.00

Joe 5 14.00 0.00 12.00

Note that SQL enables you to get the same result presented differently by using the “group by” clause,

namely:

select who, week, what, sum(amount) from expenses

 group by who, week, what;

However, there is no way to get the pivoted layout shown above just using SQL. Even using imbedded

SQL programming for some DBMS is not quite simple and automatic.

The Pivot table type of CONNECT makes doing this much simpler.

Using the PIVOT Tables Type

To get the result shown in the example above, just define it as a new table with the statement:

create table pivex

engine=connect table_type=pivot tabname=expenses;

Now you can use it as any other table, for instance to display the result shown above, just say:

select * from pivex;

The CONNECT implementation of the PIVOT table type does much of the work required to transform the

source table:

- 131 -

1. Finding the “Facts” column, by default the last column of the source table33.

2. Finding the “Pivot” column, by default the last remaining column.

3. Choosing the aggregate function to use, “SUM” by default.

4. Constructing and executing the “Group By” on the “Facts” column, getting its result in memory.

5. Getting all the distinct values in the “Pivot” column and defining a “Data” column for each.

6. Spreading the result of the intermediate memory table into the final table.

Note: The source table “Pivot” column must not be nullable (there are no such things as a “null” column)

The creation will be refused even is this nullable column does not contain null values.

If a different result is desired, Create Table options are available to change the defaults used by Pivot.

For instance, if we want to display the average expense for each person and product, spread in columns

for each week, use the following statement:

create table pivex2

engine=connect table_type=pivot tabname=expenses

option_list='PivotCol=Week,Function=AVG';

Now saying:

select * from pivex2;

Will display the resulting table:

Who What 3 4 5

Beth Beer 16.00 15.00 20.00

Beth Food 0.00 17.00 12.00

Janet Beer 18.00 0.00 16.50

Janet Car 19.00 17.00 12.00

Janet Food 18.00 0.00 12.00

Joe Beer 18.00 16.33 14.00

Joe Car 20.00 0.00 0.00

Joe Food 15.50 17.00 12.00

Restricting the columns in a Pivot Table

Let us suppose that we want a Pivot table from expenses summing the expenses for all people and

products whatever week it was bought. We can do this just by removing from the pivex table the week

column from the column list.

alter table pivex drop column week;

Alternatively, this can be done when doing the create table for the table. This is obvious if the columns

are specified but when they are not, skipping the unwanted columns must be specified with the SKIPCOL

option. For instance:

create table pivex

engine=connect table_type=pivot tabname=expenses

option_list='SkipCol=week';

The result we get from the new table is:

WHO Beer Car Food

33 Finding “Facts” or “Pivot” columns works only for table based pivot tables. They do not for view or

srcdef based pivot tables, for which they must be explicitly specified.

- 132 -

Beth 51.00 0.00 29.00

Janet 51.00 48.00 30.00

Joe 81.00 20.00 77.00

Note: Restricting columns is also needed when the source tables contains extra columns that should not

be part of the pivot table. This is true in particular for key columns that prevent a proper grouping.

PIVOT Create Table Syntax

The Create Table statement for PIVOT tables uses the following syntax:

CREATE TABLE pivot_table_name

[(column_definition)]

ENGINE=CONNECT TABLE_TYPE=PIVOT

{TABNAME='source_table_name' | SRCDEF='source_table_def'}

[OPTION_LIST='pivot_table_option_list'];

The column definition has two sets of columns:

1. A set of columns belonging to the source table, not including the “facts” and “pivot” columns.

2. “Data” columns receiving the values of the aggregated “facts” columns named from the values

of the “pivot” column. They are indicated by the “flag” option.

The options and sub-options available for Pivot tables are:

Option Type Description

Tabname [DB.]Name The name of the table to “pivot”. If not set SrcDef must be specified.

SrcDef SQL_statement The statement used to generate the intermediate mysql table.

DBname name The name of the database containing the source table. Defaults to the

current database.

Function* name The name of the aggregate function used for the data columns, SUM by

default.

PivotCol* name Specifies the name of the Pivot column whose values are used to fill the

“data” columns having the flag option.

FncCol* [func(]name[)] Specifies the name of the data “Facts” column. If the form func(name)

is used, the aggregate function name is set to func.

SkipCol* name[;name…] Specifies the name of the source table unwanted columns to skip

separated by semi-colons.

Groupby* Boolean Set it to True (1 or Yes) if the table already has a GROUP BY format.

Accept* Boolean To accept non-matching Pivot column values.

*: These options must be specified in the OPTION_LIST.

Additional access options

There are four cases where PIVOT must call the server containing the source table or on which the SrcDef

statement must be executed:

1. The source table is not a CONNECT table.

2. The SrcDef option is specified.

3. The source table is on another server.

4. The columns are not specified.

By default, PIVOT tries to call the currently used server using host=localhost, user=root not using

password, and port=3306. However, this may not be what is needed, in particular if the local root user

has a password in which case you can get an “access denied” error message when creating or using the

pivot table.

- 133 -

Specify the HOST, USER, PASSWORD and/or PORT options in the OPTION_LIST to override the default

connection options used to access the source table, get column specifications, execute the generated

GROUP BY or SrcDef query.

Defining a Pivot table

There are principally two ways to define a PIVOT table:

1. From an existing table or view.

2. Directly giving the SQL statement returning the result to pivot.

Defining a Pivot Table from a source Table

The tabname standard table option is used to give the name of the source table or view.

For tables or views, the internal Group By will be internally generated, except when the GROUPBY option

is specified as true. Do it only when the table or view already has a valid GROUP BY format.

Directly defining the Source of a Pivot Table in SQL

Alternatively, the internal source can be directly defined using the SrcDef option that must have the

proper group by format.

As we have seen above, a proper Pivot Table is made from an internal intermediate table resulting from

the execution of a GROUP BY statement. In many cases, it is simpler or desirable to directly specify this

when creating the pivot table. This may be because the source is the result of a complex process including

filtering and/or joining tables.

To do this, use the SrcDef option, often replacing all other options. For instance, suppose that in the first

example we are only interested in weeks 4 and 5. We could of course display it by:

select * from pivex where week in (4,5);

However, what if this table is a huge table? In this case, the correct way to do it is to define the pivot

table as this:

create table pivex4

engine=connect table_type=pivot

option_list='PivotCol=what,FncCol=amount'

SrcDef='select who, week, what, sum(amount) from expenses

where week in (4,5) group by who, week, what';

If your source table has millions of records and you plan to pivot only a small subset of it, doing so will

make a lot of a difference performance wise. In addition, you have entire liberty to use expressions, scalar

functions, aliases, join, where and having clauses in your SQL statement. The only constraint is that you

are responsible for the result of this statement to have the correct format for the pivot processing.

Using SrcDef also permits to use expressions and/or scalar functions. For instance:

create table xpivot (

Who char(10) not null,

What char(12) not null,

First double(8,2) flag=1,

Middle double(8,2) flag=1,

Last double(8,2) flag=1)

engine=connect table_type=PIVOT

option_list='PivotCol=wk,FncCol=amnt'

- 134 -

Srcdef='select who, what, case when week=3 then ''First'' when

week=5 then ''Last'' else ''Middle'' end as wk, sum(amount) *

6.56 as amnt from expenses group by who, what, wk';

Now the statement:

select * from xpivot;

Will display the result:

Who What First Middle Last

Beth Beer 104.96 98.40 131.20

Beth Food 0.00 111.52 78.72

Janet Beer 118.08 0.00 216.48

Janet Car 124.64 111.52 78.72

Janet Food 118.08 0.00 78.72

Joe Beer 118.08 321.44 91.84

Joe Car 131.20 0.00 0.00

Joe Food 203.36 223.04 78.72

Note 1: to avoid multiple lines having the same fixed column values, it is mandatory in SrcDef to place

the pivot column at the end of the group by list.

Note 2: in the create statement SrcDef, it is mandatory to give aliases to the columns containing

expressions so they are recognized by the other options.

Note 3: in the SrcDef select statement, quotes must be escaped because the entire statement is passed to

MariaDB between quotes. Alternatively, specify it between double quotes.

Note 4: We could have left CONNECT do the column definitions. However, because they are defined

from the sorted names, the Middle column would have been placed at the end of them.

Specifying the columns corresponding to the Pivot column

These columns must be named from the values existing in the “pivot” column. For instance, supposing

we have the following pet table:

name race number

John dog 2

Bill cat 1

Mary dog 1

Mary cat 1

Lisbeth rabbit 2

Kevin cat 2

Kevin bird 6

Donald dog 1

Donald fish 3

Pivoting it using race as the pivot column is done with:

create table pivet

engine=connect table_type=pivot tabname=pet

option_list='PivotCol=race,groupby=1';

- 135 -

This gives the result:

name dog cat rabbit bird fish

John 2 0 0 0 0

Bill 0 1 0 0 0

Mary 1 1 0 0 0

Lisbeth 0 0 2 0 0

Kevin 0 2 0 6 0

Donald 1 0 0 0 3

By the way, does this ring a bell? It shows that in a way PIVOT tables are doing the opposite of what

OCCUR tables do.

We can alternatively define specifically the table columns but what happens if the Pivot column contains

values that is not matching a “data” column? There are three cases depending on the specified options

and flags.

First case: If no specific options are specified, this is an error and, when trying to display the table, the

query will abort with an error message stating that a non-matching value was met. Note that because the

column list is established when creating the table, this is prone to occur if some rows containing new

values for the pivot column are inserted in the source table. If this happens, you should re-create the table

or manually add the new columns to the pivot table.

Second case: The accept option was specified. For instance:

create table xpivet2 (

name varchar(12) not null,

dog int not null default 0 flag=1,

cat int not null default 0 flag=1)

engine=connect table_type=pivot tabname=pet

option_list='PivotCol=race,groupby=1,Accept=1';

No error will be raised and the non-matching values will be ignored. This table will be displayed as:

name dog cat

John 2 0

Bill 0 1

Mary 1 1

Lisbeth 0 0

Kevin 0 2

Donald 1 0

Third case: A “dump” column was specified with the flag value equal to 2. All non-matching values

will be added in this column. For instance:

create table xpivet (

name varchar(12) not null,

dog int not null default 0 flag=1,

cat int not null default 0 flag=1,

other int not null default 0 flag=2)

engine=connect table_type=pivot tabname=pet

option_list='PivotCol=race,groupby=1';

This table will be displayed as:

- 136 -

name dog cat other

John 2 0 0

Bill 0 1 0

Mary 1 1 0

Lisbeth 0 0 2

Kevin 0 2 6

Donald 1 0 3

Note: It is a good idea to provide such a “dump” column if the source table is prone to be inserted new

rows that can have a value for the pivot column that did not exist when the pivot table was created.

Pivoting big source tables

This may sometimes be risky. If the pivot column contains too many distinct values, the resulting table

may have too many columns. In all cases the process involved, finding distinct values when creating the

table or doing the group by when using it, can be very long and sometimes can fail because of exhausted

memory.

Restrictions by a where clause should be applied to the source table when creating the pivot table rather

than to the pivot table itself. This can be done by creating an intermediate table or using as source a view

or a srcdef option.

Note: All PIVOT tables are read only.

TBL Table Type: Table List
This type allows defining a table as a list of tables of any engine and type. This is more flexible than

multiple tables that must be all of the same file type. This type does, but is more flexible than, what is

done with the MERGE engine.

The list of the columns of the TBL table may not necessarily include all the columns of the tables of the

list. If the name of some columns is different in the sub-tables, the column to use can be specified by its

position given by the FLAG option of the column. If the ACCEPT option is set to true (Y or 1) columns that

do not exist in some of the sub-tables are accepted and their value will be null or pseudo-null34 for the

tables not having this column. The column types can also be different and an automatic conversion will

be done if necessary.

Note: If not specified, the column definitions are retrieved from the first table of the table list.

The default database of the sub-tables is the current database or if not, can be specified in the DBNAME

option. For the tables that are not in the default database, this can be specified in the table list. For

instance, to create a table based on the French table employe in the current database and on the English

table employee of the db2 database, the syntax of the create statement can be:

CREATE TABLE allemp (

SERIALNO char(5) NOT NULL flag=1,

NAME varchar(12) NOT NULL flag=2,

SEX smallint(1),

TITLE varchar(15) NOT NULL flag=3,

MANAGER char(5) DEFAULT NULL flag=4,

DEPARTMENT char(4) NOT NULL flag=5,

SECRETARY char(5) DEFAULT NULL flag=6,

SALARY double(8,2) NOT NULL flag=7)

ENGINE=CONNECT table_type=TBL

table_list='employe,db2.employee' option_list='Accept=1';

34 This depends on the nullability of the column.

- 137 -

The search for columns in sub tables is done by name and, if they exist with a different name, by their

position given by a not null FLAG option. Column sex exists only in the English table (FLAG is 0). Its

values will null value for the French table.

For instance, the query:

select name, sex, title, salary from allemp where department = 318;

Can reply:

NAME SEX TITLE SALARY

BARBOUD NULL VENDEUR 9700.00

MARCHANT NULL VENDEUR 8800.00

MINIARD NULL ADMINISTRATIF 7500.00

POUPIN NULL INGENIEUR 7450.00

ANTERPE NULL INGENIEUR 6850.00

LOULOUTE NULL SECRETAIRE 4900.00

TARTINE NULL OPERATRICE 2800.00

WERTHER NULL DIRECTEUR 14500.00

VOITURIN NULL VENDEUR 10130.00

BANCROFT 2 SALESMAN 9600.00

MERCHANT 1 SALESMAN 8700.00

SHRINKY 2 ADMINISTRATOR 7500.00

WALTER 1 ENGINEER 7400.00

TONGHO 1 ENGINEER 6800.00

HONEY 2 SECRETARY 4900.00

PLUMHEAD 2 TYPIST 2800.00

WERTHER 1 DIRECTOR 14500.00

WHEELFOR 1 SALESMAN 10030.00

The first 9 rows, coming from the French table, have a null for the sex value. They would have 0 if the

sex column had been created NOT NULL.

Sub-tables of not CONNECT engines

Sub-tables are accessed as PROXY tables. For not CONNECT sub-tables that are accessed via the MySQL

API, it is possible like with PROXY to change the MYSQL default options. Of course, this will apply to all

not CONNECT tables of the list.

Using the TABID special column

The TABID special column can be used to see from which table the rows come from and to restrict the

access to only some of sub-tables.

Let us see the following example where t1 and t2 are MyISAM tables similar to the ones given in the

MERGE description:

create table xt1 (

a int(11) not null,

message char(20))

engine=CONNECT table_type=MYSQL tabname='t1'

option_list='database=test,user=root';

create table xt2 (

- 138 -

a int(11) not null,

message char(20))

engine=CONNECT table_type=MYSQL tabname='t2'

option_list='database=test,user=root';

create table total (

tabname char(8) not null special='TABID',

a int(11) not null,

message char(20))

engine=CONNECT table_type=TBL table_list='xt1,xt2';

select * from total;

The result returned by the SELECT statement is:

tabname a message

xt1 1 Testing

xt1 2 table

xt1 3 t1

xt2 1 Testing

xt2 2 table

xt2 3 t2

Now if you send the query:

select * from total where tabname = 'xt2';

CONNECT will analyze the where clause and only read the xt2 table. This can save time if you want to

retrieve only a few sub-tables from a TBL table containing many sub-tables.

Parallel Execution

This is currently unavailable until some bugs are fixed.

When the sub-tables are located on different servers35, it is possible to execute the remote queries

simultaneously instead of sequentially. To enable this, set the THREAD option to yes.

Additional options available for this table type:

Option Description

Maxerr The max number of missing tables in the table list before an error is raised. Defaults to 0.

Accept If true, missing columns are accepted and return null values. Defaults to false.

Thread If true, enables parallel execution of remote sub-tables.

These options can be specified in the OPTION_LIST.

Note 1: All TBL tables are read only.

Note 2: An alternative to using the TBL type is to create a partition table specifying each partition to be

a sub-table. This will be described later in this document.

35 There is a bug that is not fixed yet. Until it is, all remote tables must be executed on different servers.

Do not do it if more than one table are executed on the same remote server.

- 139 -

Using the TBL and MYSQL types together
Used together, these types raise all the limitations of the FEDERATED and MERGE engines.

MERGE: Its limitation is obvious, the merged tables must be identical MyISAM tables, and MyISAM

is even not the default engine for MariaDB. However, TBL accesses a collection of CONNECT tables,

but because these tables can be user specified or internally created MYSQL tables, there is no limitation

to the type of the tables that can be merged.

TBL is also much more flexible. The merged tables must not be “identical”, they just should have the

columns defined in the TBL table. If the type of one column in a merged table is not the one of the

corresponding column of the TBL table, the column value will be converted. As we have seen, if one

column of the TBL table of the TBL column does not exist in one of the merged table, the corresponding

value will be set to null. If columns in a sub-table have a different name, they can be accessed by position

using the FLAG column option of CONNECT.

However, one limitation of the TBL type regarding MERGE is that TBL tables are currently read-only;

INSERT is not supported by TBL. Therefore, rather use MERGE to access a list of identical MyISAM

tables because it will be faster, not passing by the MySQL API.

FEDERATED(X): The main limitation of FEDERATED is to access only MySQL/MariaDB tables.

The MYSQL table type of CONNECT has the same limitation but CONNECT provides the ODBC and

JDBC table types that can access tables of any RDBS providing an ODBC or JDBC driver (including

MySQL even it is not really useful!)

Another major limitation of FEDERATED is to access only one table. By combining TBL and MYSQL

tables, CONNECT enables to access a collection of local or remote tables as one table. Of course, the

sub-tables can be on different servers. With one SELECT statement, a company manager will be able to

interrogate results coming from all his subsidiary computers. This is great for distribution, banking, and

many other industries.

Remotely executing complex queries

Many companies or administrations must deal with distributed information. CONNECT enables to deal

with it efficiently without having to copy it to a centralized database. Let us suppose we have on some

remote network machines m1, m2, … mn some information contained in two tables t1 and t2.

Suppose we want to execute on all servers a query such as:

select c1, sum(c2) from t1 a, t2 b where a.id = b.id group by c1;

This raises many problems. Returning the column values of the t1 and t2 tables from all servers can be a

lot of network traffic. The GROUP BY on the possibly huge resulting tables can be a long process. In

addition, the join on the t1 and t2 tables may be relevant only if the joined tuples belong to the same

machine, obliging to add a condition on an additional TABID or SERVID special column.

All this can be avoided and optimized by forcing the query to be locally executed on each server and

retrieving only the small results of the GROUP BY queries. Here is how to do it. For each remote machine,

create a table that will retrieve the locally executed query. For instance, for m1:

create table rt1 engine=connect option_list='host=m1'

srcdef='select c1, sum(c2) as sc2 from t1 a, t2 b where a.id = b.id

group by c1';

Note the alias for the functional column. An alias would be required for the c1 column if its name was

different on some machines. The t1 and t2 table names can also be eventually different on the remote

- 140 -

machines. The true names must be used in the SRCDEF parameter. This will create a set of tables with

two columns named c1 and sc236.

Then create the table that will retrieve the result of all these tables:

create table rtall engine=connect table_type=tbl

table_list='rt1,rt2,…,rtn' option_list='thread=yes';

Now you can retrieve the desired result by:

select c1, sum(sc2) from rtall;

Almost all the work will be done on the remote machines, simultaneously thanks to the thread option37,

making this query super-fast even on big tables scattered on many remote machines.

Providing a list of servers

An interesting case is when the query to run on remote machines is the same for all of them. It is then

possible to avoid declaring all sub-tables. In this case, the table list option will be used to specify the list

of servers the SRCDEF query must be sent. This will be a list of URL’s and/or Federated server names.

For instance, supposing that federated servers srv1, srv2, … srvn were created for all remote servers, it

will be possible to create a TBL table allowing getting the result of a query executed on all of them by:

create table qall [column definition]

engine=connect table_type=TBL srcdef='a query'

table_list='srv1,srv2,…,srvn' [option_list='tread=yes'];

For instance:

create table verall engine=connect table_type=TBL

srcdef='select @@version' table_list=',server_one';

select * from verall;

This reply:

@@version

10.0.3-MariaDB-debug

10.0.2-MariaDB

Here the server list specifies a void server corresponding to the local running MariaDB and a federated

server named server_one.

Special “Virtual” Tables
The special table types supported by CONNECT are the Virtual table type (VIR), Directory Listing table

type (DIR), the Windows Management Instrumentation Table Type (WMI), and the “Mac Address” type

(MAC).

These tables are “virtual tables”, meaning they have no physical data but rather produce result data using

specific algorithms. Note that this is close to what Views are, so they could be regarded as special views.

36 To generate the columns from the SRCDEF query, CONNECT must execute it. This will make sure it

is ok. However, if the remote server is not connected yet, or the remote table not existing yet, you can

alternatively specify the columns in the CREATE TABLE statement.
37 Thread is currently experimental. Use it only for test and report any malfunction on JIRA.

- 141 -

Virtual table type “VIR”

A VIR table is a virtual table having only Special or Virtual columns. Its only property is its “size”, or

cardinality, meaning the number of virtual rows it contains. It is created using the syntax:

CREATE TABLE name [coldef] ENGINE=CONNECT TABLE_TYPE=VIR

[BLOCK_SIZE=n];

The optional BLOCK_SIZE option gives the size of the table, defaulting to 1 if not specified. When its

columns are not specified, it is almost equivalent to a SEQUENCE table “seq_1_to_Size”.

Displaying constants or expressions

Many DBMS use a no-column one-line table to do this, often call “dual”. MySQL and MariaDB use

syntax where no table is specified. With CONNECT, you can achieve the same purpose with a virtual

table, with the noticeable advantage of being able to display several lines. For example:

create table virt engine=connect table_type=VIR block_size=10;

select concat('The square root of ', n, ' is') what,

round(sqrt(n),16) value from virt;

This will return:

what value

The square root of 1 is 1.0000000000000000

The square root of 2 is 1.4142135623730951

The square root of 3 is 1.7320508075688772

The square root of 4 is 2.0000000000000000

The square root of 5 is 2.2360679774997898

The square root of 6 is 2.4494897427831779

The square root of 7 is 2.6457513110645907

The square root of 8 is 2.8284271247461903

The square root of 9 is 3.0000000000000000

The square root of 10 is 3.1622776601683795

What happened here? First, unlike Oracle “dual” table that have no columns, a MariaDB table must have

at least one column. By default, CONNECT creates VIR tables with one special column. This can be

seen with the SHOW CREATE TABLE statement:

CREATE TABLE `virt` (

 `n` int(11) NOT NULL `SPECIAL`=ROWID,

 PRIMARY KEY (`n`)

) ENGINE=CONNECT DEFAULT CHARSET=latin1 `TABLE_TYPE`='VIR'

`BLOCK_SIZE`=10

This special column is called “n” and its value is the row number starting from 1. It is purely a virtual

table and no data file exists corresponding to it and to its index.

It is possible to specify the columns of a VIR table but they must be CONNECT special columns or

virtual columns. For instance:

create table virt2 (

 n int key not null special=rowid,

 sig1 bigint as ((n*(n+1))/2) virtual,

 sig2 bigint as(((2*n+1)*(n+1)*n)/6) virtual)

engine=connect table_type=VIR block_size=10000000;

select * from virt2 limit 995, 5;

- 142 -

This table shows the sum and the sum of the square of the n first integers:

n sig1 sig2

996 496506 329845486

997 497503 330839495

998 498501 331835499

999 499500 332833500

1000 500500 333833500

Note that the size of the table can be made very big as there no physical data. However, the result should

be limited in the queries. For instance:

select * from virt2 where n = 1664510;

Such a query could last very long if the rowid column were not indexed. Note that by default, CONNECT

declares the “n” column as a primary key. Actually, VIR tables can be indexed but only on the ROWID

(or ROWNUM) columns of the table. This is a virtual index for which no data is stored.

Generating a Table filled with constant values

An interesting use of virtual tables, which often cannot be achieved with a table of any other type, is to

generate a table containing constant values.

This is easily done with a virtual table. Let us define the table FILLER as:

create table filler engine=connect table_type=VIR block_size=5000000;

Here we choose a size larger than the biggest table we want to generate. Later if we need a table pre-

filled with default and/or null values, we can do for example:

create table tp (

id int(6) key not null,

name char(16) not null,

salary float(8,2));

insert into tp select n, 'unknown', NULL from filler where n

<= 10000;

This will generate a table having 10000 rows that can be updated later when needed. Note that a

SEQUENCE table could have been used here instead of FILLING.

VIR tables vs. SEQUENCE tables

With just its default column, a VIR table is almost equivalent to a SEQUENCE table. The syntax used is

the main difference, for instance:

select * from seq_100_to_150_step_10;

can be obtained with a VIR table (of size >= 15) by:

select n*10 from vir where n between 10 and 15;

Therefore, the main difference is to be able to define the columns of VIR tables. Unfortunately, there are

currently many limitations to virtual columns that hopefully should be removed in the future.

DIR Type

A table of type DIR returns a list of file name and description as a result set. To create a DIR table, use a

Create Table statement such as:

- 143 -

create table source (

DRIVE char(2),

PATH varchar(256),

FNAME varchar(256),

FTYPE char(4),

SIZE double(12,0) flag=5,

MODIFIED datetime)

engine=CONNECT table_type=DIR file_name='..*.cc';

When used in a query, the table returns the same file information listing than the system “DIR *.cc”

statement would return if executed in the same current directory (here supposedly ..\)

For instance, the query:

select fname, size, modified from source

where fname like '%handler%';

Displays:

fname size modified

handler 152177 2011-06-13 18:08:29

sql_handler 25321 2011-06-13 18:08:31

Note: the important item in this table is the flag option value (set sequentially from 0 by default on

Windows and from 1 on linux) because it determines which information item is returned in the column:

Flag value Information

0 The disk drive (Windows)

1 The file path

2 The file name

3 The file type

4 The file attribute

5 The file size

6 The last write access date

7 The last read access date

8 The file creation date

The Subdir option

When specified in the create table statement, the Boolean subdir option indicates to list, in addition to

the files contained in the specified directory, all the files verifying the filename pattern that are contained

in sub-directories of the specified directory. For instance, using:

create table data (

PATH varchar(256) flag=1,

FNAME varchar(256),

FTYPE char(4),

SIZE double(12,0) flag=5)

engine=CONNECT table_type=DIR file_name='*.frm'

option_list='subdir=1';

select path, count(*), sum(size) from data group by path;

You will get the following result set showing how many tables are created in the MariaDB databases and

what is the total length of the FRM files:

- 144 -

path count(*) sum(size)

\CommonSource\mariadb-5.2.7\sql\data\connect\ 30 264469

\CommonSource\mariadb-5.2.7\sql\data\mysql\ 23 207168

\CommonSource\mariadb-5.2.7\sql\data\test\ 22 196882

The Nodir option (Windows)

The Boolean Nodir option can be set to false (0 or no) to add directories that match the file name pattern

from the listed files (it is true by default). This is an addition to CONNECT version 1.6. Previously,

directory names matching pattern where listed on Windows. Directories were and are never listed on

Linux.

Note: The way file names are retrieved make positional access to them impossible. Therefore, DIR tables

cannot be indexed nor sorted when it is done using positions.

Be aware, in particular when using the subdir option, that queries on DIR tables are slow and can last

almost forever if made on a directory that contains a great number of files in it and its sub-directories.

DIR tables can be used to populate a list of files used to create a multiple=2 table. However, this is not as

useful as it was when the multiple 3 did not exist.

Windows Management Instrumentation Table Type “WMI”

Note: This table type is available on Windows only.

WMI provides an operating system interface through which instrumented components provide

information. Some Microsoft tools to retrieve information through WMI are the WMIC console

command and the WMI CMI Studio application.

The CONNECT WMI table type enables administrators and operators not capable of scripting or

programming on top of WMI to enjoy the benefit of WMI without even learning about it. It permits to

present this information as tables that can be queried, transformed, copied in documents or other tables.

To create a WMI table displaying information coming from a WMI provider, you must provide the

namespace and the class name that characterize the information you want to retrieve. The best way to

find them is to use the WMI CIM Studio that have tools to browse namespaces and classes and that can

display the names of the properties of that class.

The column names of the tables must be the names (case insensitive) of the properties you want to

retrieve. For instance:

create table alias (

friendlyname char(32) not null,

target char(50) not null)

engine=CONNECT table_type='WMI'

option_list='Namespace=root\\cli,Class=Msft_CliAlias';

WMI tables return one row for each instance of the related information. The above example is handy to

get the class equivalent of the alias of the WMIC command and to have a list of many classes commonly

used.

Because most of the useful classes belong to the ‘root\cimv2’ namespace, this is the default value for

WMI tables when the namespace is not specified. Some classes have many properties whose name and

type may not be known when creating the table. To find them, you can use the WMI CMI Studio

application but his will be rarely required because CONNECT can retrieve them.

Actually, the class specification also has default values for some namespaces. For the ‘root\cli’

namespace the class name defaults to ‘Msft_CliAlias’ and for the ‘root_cimv2’ namespace the class

default value is ‘Win32_ComputerSystemProduct’. Because many class names begin with ‘Win32_’ it

is not necessary to say it and specifying the class as ‘Product’ will effectively use class ‘Win32_Product’.

- 145 -

For example if you define a table as:

create table CSPROD engine=CONNECT table_type='WMI';

It will return the information on the current machine, using the class ComputerSystemProduct of the

CIMV2 namespace. For instance:

select * from csprod;

Will return a result such as:

Column Row 1

Caption Computer system product

Description Computer system product

IdentifyingNumber LXAP50X32982327A922300

Name Aspire 8920

SKUNumber

UUID 00FC523D-B8F7-DC12-A70E-00B0D1A46136

Vendor Acer

Version Aspire 8920

Note: This is a transposed display that can be obtained with some GUI.

Getting column information

An issue, when creating a WMI table, is to make its column definition. Indeed, even when you know the

namespace and the class for the wanted information, it is not easy to find what are the names and types

of its properties. However, because CONNECT can retrieve this information from the WMI provider,

you can simply omit defining columns and CONNECT will do the job.

Alternatively, you can get this information using a catalog table (see below).

Performance Consideration

Some WMI providers can be very slow to answer. This is not an issue for those that return few object

instances, such as the ones returning computer, motherboard, or Bios information. They generally return

only one row (instance). However, some can return many rows, in particular the “CIM_DataFile” class.

This is why care must be taken about them.

Firstly, it is possible to limit the allocated result size by using the ‘Estimate’ create table option. To avoid

result truncation, CONNECT allocates a result of 100 rows that is enough for almost all tables. The

‘Estimate’ option permits to reduce this size for all classes that return only a few rows, and in some rare

case to increase it to avoid truncation.

However, it is not possible to limit the time taken by some WMI providers to answer, in particular the

CIM_DATAFILE class. Indeed, the Microsoft documentation says about it:

“Avoid enumerating or querying for all instances of CIM_DataFile on a computer because the volume

of data is likely to either affect performance or cause the computer to stop responding.”

Indeed, even a simple query such as:

select count(*) from cim where drive = 'D:' and path like

'\\MariaDB\\%';

is prone to last almost forever (probably due to the LIKE clause). Therefore, when not asking for some

specific items, you should consider using the DIR table type instead.

- 146 -

Syntax of WMI queries

Queries to WMI providers are done using the WQL language, not the SQL language. CONNECT does

the job of making the WQL query. However, because of the restriction of the WQL syntax, the WHERE

clause will be generated only when respecting the following restrictions:

1. No function.

2. No comparison between two columns.

3. No expression (currently a CONNECT restriction)

4. No BETWEEN and IN predicates.

Filtering with WHERE clauses not respecting these conditions will still be done by MariaDB only, except

in the case of CIM_Datafile class for the reason given above.

However, there is one point that is not covered yet, the syntax used to specify dates in queries. WQL

does not recognize dates as number items but translates them to its internal format dates specified as text.

Many formats are recognized as described in the Microsoft documentation but only one is useful because

common to WQL and MariaDB SQL. Here is an example of a query on a table named “cim” created by:

create table cim (

Name varchar(255) not null,

LastModified datetime not null)

engine=CONNECT table_type='WMI'

option_list='class=CIM_DataFile,estimate=5000';

The date must be specified with the format in which CIM DATETIME values are stored (WMI uses the

date and time formats defined by the Distributed Management Task Force)

select * from cim where drive = 'D:' and path = '\\PlugDB\\Bin\\'

and lastmodified > '20120415000000.000000+120';

This syntax must be strictly respected. The text has the format:

yyyymmddHHMMSS.mmmmmmsUUU

It is: year, month, day, hour, minute, second, millisecond, and signed minute deviation from UTC. This

format is locale-independent so you can write a query that runs on any machine.

Note 1: The WMI table type is available only in Windows versions of CONNECT.

Note 2: WMI tables are read only.

Note 3: WMI tables are not indexable.

Note 4: WMI consider all strings as case insensitive.

MAC Address Table Type “MAC”

Note: This table type is available on Windows only.

This type is used to display general information about the computer and, in particular, about its network

cards. To create such a table, the syntax to use is:

create table tabname (column definition)

engine=CONNECT table_type=MAC;

Column names can be freely chosen because their signification, i.e. the values they will display, comes

from the specified Flag option. The valid values for Flag are:

- 147 -

Flag Valeur Type

1 Host name varchar(132)

2 Domain varchar(132)

3 DNS address varchar(24)

4 Node type int(1)

5 Scope ID varchar(256)

6 Routing int(1)

7 Proxy int(1)

8 DNS int(1)

10 Name varchar(260)

11 Description varchar(132)

12 MAC address char(24)

13 Type int(3)

14 DHCP int(1)

15 IP address char(16)

16 SUBNET mask char(16)

17 GATEWAY char(16)

18 DHCP server char(16)

19 Have WINS int(1)

20 Primary WINS char(16)

21 Secondary WINS char(16)

22 Lease obtained datetime

23 Lease expires datetime

Note: The information of columns having a Flag value less than 10 are unique for the computer, the other

ones are specific to the network cards of the computer.

For instance, you can define the table macaddr as:

create table macaddr (

Host varchar(132) flag=1,

Card varchar(132) flag=11,

Address char(24) flag=12,

IP char(16) flag=15,

Gateway char(16) flag=17,

Lease datetime flag=23)

engine=CONNECT table_type=MAC;

If you execute the query:

select host, address, ip, gateway, lease from macaddr;

It will return, for example:

Host Address IP Gateway Lease

OLIVIER 00-A0-D1-A4-61-36 0.0.0.0 0.0.0.0 1970-01-01 00:00:00

OLIVIER 00-1D-E0-9B-90-0B 192.168.0.10 192.168.0.254 2011-09-18 10:28:58

- 148 -

OEM Type: Implemented in an External LIB
Although CONNECT provides a rich set of table types, specific applications may need to access data

organized in a way that is not handled by its existing foreign data wrappers (FDW). To handle these

cases, CONNECT features an interface that enables developers to implement in C++ the required table

wrapper and use it as if it were part of the standard CONNECT table type list. CONNECT can use these

additional wrappers providing the corresponding external module (dll or shared lib) be available.

To create such a table on an external wrapper, use a Create Table statement as shown below.

create table xtab [(column definitions)]

engine=CONNECT table_type=OEM module='libname'

subtype='MYTYPE' [standard table options]

Option_list='Myopt=foo';

The option module gives the name of the DLL or shared library implementing the OEM wrapper for the

table type. This library must be located in the plugin directory like all other plugins or UDF’s.

This library must export a function GetMYTYPE. The option subtype enables CONNECT to have the

name of the exported function and to use the new table type. Other options are interpreted by the OEM

type and can also be specified within the option_list option.

Column definitions can be unspecified only if the external wrapper can return this information. For this

it must export a function ColMYTYPE returning these definitions in a format acceptable by the

CONNECT discovery function.

Which and how options must be specified and the way columns must be defined may vary depending on

the OEM type used and should be documented by the OEM type implementer(s).

An OEM table example

The OEM table MONGO whose source is shown on appendix B permits to use MONGO like tables with

MariaDB binary distributions containing but not enabling the MONGO table type.

Of course, the mongo (dll or so) exporting the GetMONGO and ColMONGO functions must be available

in the plugin directory for all this to work.

Some currently developed OEM table modules and subtypes:

Module Subtype Description

libhello HELLO A sample OEM wrapper displaying a one line table saying “Hello world”

mongo MONGO Enables using tables based on MongoDB collections.

Tabfic FIC Handles files having the Windev HyperFile format.

Tabofx OFC Handles Open Financial Connectivity files.

Tabofx QIF Handles Quicken Interchange Format files.

Cirpack CRPK Handles CDR's from Cirpack UTP's.

Tabplg PLG Access tables from the PlugDB DBMS (supports Discovery).

How to implement an OEM wrapper is out of the scope of this document.

- 149 -

Catalog Tables
A catalog table is one that returns information about another table, or data source. It is similar to what

MySQL commands such as DESCRIBE or SHOW do. Applied to local tables, this just duplicates what these

commands do, with the noticeable difference that they are tables and can be used inside queries as joined

tables or inside sub-selects.

But their main interest is to enable querying the structure of external tables that cannot be directly queried

with description commands. Let’s see an example:

Suppose we want to access the tables from a Microsoft Access database as an ODBC type table. The first

information we must obtain is the list of tables existing in this data source. To get it, we will create a

catalog table that will return it extracted from the result set of the SQLTables ODBC function:

create table tabinfo (

table_name varchar(128) not null,

table_type varchar(16) not null)

engine=connect table_type=ODBC catfunc=tables

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

The SQLTables function returns a result set having the following columns:

Field Data Type Null Info Type Flag Value

Table_Cat char(128) NO FLD_CAT 17

Table_Schema char(128) NO FLD_SCHEM 18

Table_Name char(128) NO FLD_NAME 1

Table_Type char(16) NO FLD_TYPE 2

Remark char(255) NO FLD_REM 5

Note: The Info Type and Flag Value are CONNECT interpretations of this result.

Here we could have omitted the column definitions of the catalog table or, as in the above example, chose

the columns returning the name and type of the tables. If specified, the columns must have the exact

name of the corresponding SQLTables result set, or be given a different name with the matching flag

value specification.

(The Table_Type can be TABLE, SYSTEM TABLE, VIEW, etc.)

For instance, to get the tables we want to use we can ask:

select table_name from tabinfo where table_type = 'TABLE';

This will return:

table_name

Categories

Customers

Employees

Products

Shippers

Suppliers

Now we want to create the table to access the CUSTOMERS table. Because CONNECT can retrieve the

column description of ODBC tables, it not necessary to specify them in the create table statement:

- 150 -

create table Customers engine=connect table_type=ODBC

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

However, if we prefer to specify them (to eventually modify them) we must know what the column

definitions of that table are. We can get this information with a catalog table. This is how to do it:

create table custinfo engine=connect table_type=ODBC

tabname=customers catfunc=columns

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

Alternatively, it is possible to specify what column of the catalog table we want:

create table custinfo (

column_name char(128) not null,

type_name char(20) not null,

length int(10) not null flag=7,

prec smallint(6) not null flag=9)

nullable smallint(6) not null)

engine=connect table_type=ODBC tabname=customers

catfunc=columns

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

To get the column info:

select * from custinfo;

which results in this table:

column_name type_name length prec nullable

CustomerID VARCHAR 5 0 1

CompanyName VARCHAR 40 0 1

ContactName VARCHAR 30 0 1

ContactTitle VARCHAR 30 0 1

Address VARCHAR 60 0 1

City VARCHAR 15 0 1

Region VARCHAR 15 0 1

PostalCode VARCHAR 10 0 1

Country VARCHAR 15 0 1

Phone VARCHAR 24 0 1

Fax VARCHAR 24 0 1

Now you can create the CUSTOMERS table as:

create table Customers (

CustomerID varchar(5),

CompanyName varchar(40),

ContactName varchar(30),

ContactTitle varchar(30),

Address varchar(60),

City varchar(15),

Region varchar(15),

- 151 -

PostalCode varchar(10),

Country varchar(15),

Phone varchar(24),

Fax varchar(24))

engine=connect table_type=ODBC block_size=10

Connection='DSN=MS Access Database;DBQ=C:/Program

Files/Microsoft Office/Office/1033/FPNWIND.MDB;';

Let us explain what we did here: First of all, the creation of the catalog table. This table returns the result

set of an ODBC SQLColumns function sent to the ODBC data source. Columns functions always return

a data set having some of the following columns, depending on the table type:

Field Data Type Null Info Type Flag

Value

Returned by

Table_Cat* char(128) NO FLD_CAT 17 ODBC, JDBC

Table_Schema* char(128) NO FLD_SCHEM 18 ODBC, JDBC

Table_Name char(128) NO FLD_TABNAME 19 ODBC, JDBC

Column_Name char(128) NO FLD_NAME 1 ALL

Data_Type smallint(6) NO FLD_TYPE 2 ALL

Type_Name char(30) NO FLD_TYPENAME 3 ALL

Column_Size* int(10) NO FLD_PREC 4 ALL

Buffer_Length* int(10) NO FLD_LENGTH 5 ALL

Decimal_Digits* smallint(6) NO FLD_SCALE 6 ALL

Radix smallint(6) NO FLD_RADIX 7 ODBC, JDBC,

MYSQL

Nullable smallint(6) NO FLD_NULL 8 ODBC, JDBC,

MYSQL

Remarks char(255) NO FLD_REM 9 ODBC, JDBC,

MYSQL

Collation char(32) NO FLD_CHARSET 10 MYSQL

Key char(4) NO FLD_KEY 11 MYSQL

Default_value N.A. FLD_DEFAULT 12

Privilege N.A. FLD_PRIV 13

Date_fmt char(32) NO FLD_DATEFMT 15 MYSQL

Xpath/Jpath Varchar(256) NO FLD_FORMAT 16 XML/JSON

*: These names have changed since earlier versions of CONNECT. For tables created earlier, if you get

an error message saying something such as “Invalid flag 0 for column precision”, alter or re-create the

table changing the name or adding the proper flag (precision: 4, length: 5, scale: 6)

Note: ALL includes ODBC, JDBC, MYSQL, DBF, CSV, PROXY, TBL, XML, JSON, XCOL, and

WMI table types. More could be added later.

We chose among these columns the ones that were useful for our create statement, using the flag value

when we gave them a different name (case insensitive).

The options used in this definition are the same as the one used later for the actual CUSTOMERS data tables

except that:

1. The TABNAME option is mandatory here to specify what the queried table name is.

2. The CATFUNC option was added both to indicate that this is a catalog table, and to specify that we

want column information.

- 152 -

Note: If the TABNAME option had not been specified, this table would have returned the columns of all

the tables defined in the connected data source.

Currently the available CATFUNC are:

Function Specified as: Applies to table types:

FNC_TAB tables ODBC, JDBC, MYSQL

FNC_COL columns ODBC, JDBC, MYSQL, DBF, CSV, XML, JSON, PROXY, XCOL, TBL,

WMI, ZIP

FNC_DSN datasources

dsn

sqldatasources

ODBC

FNC_DRIVER drivers

sqldrivers

ODBC, JDBC

Note: Only the bold part of the function name specification is required.

The DATASOURCE and DRIVERS functions respectively return the list of available data sources and ODBC

drivers available on the system.

The SQLDataSources function returns a result set having the following columns:

Field Data Type Null Info Type Flag value

Name varchar(256) NO FLD_NAME 1

Description varchar(256) NO FLD_REM 9

To get the data source, you can do for instance:

create table datasources

engine=CONNECT table_type=ODBC catfunc=DSN;

The SQLDrivers function returns a result set having the following columns:

Field Type Null Info Type Flag value

Description varchar(128) YES FLD_NAME 1

Attributes varchar(256) YES FLD_REM 9

You can get the driver list with:

create table drivers

engine=CONNECT table_type=ODBC catfunc=drivers;

Another example, WMI table

To create a catalog table returning the attribute names of a WMI class, use the same table options as the

ones used with the normal WMI table plus the additional option ‘catfunc=columns’. If specified, the

columns of such a catalog table can be chosen among the following:

Name Type Flag Description

Column_Name CHAR 1 The name of the property

Data_Type INT 2 The SQL data type

Type_Name CHAR 3 The SQL type name

Column_Size INT 4 The field length in character

Buffer_Length INT 5 Depends on the coding

Scale INT 6 Depends on the type

- 153 -

If you wish to use a different name for a column, set the Flag column option.

For example, before creating the “csprod” table, you could have created the info table:

create table CSPRODCOL (

Column_name char(64) not null,

Data_Type int(3) not null,

Type_name char(16) not null,

Length int(6) not null flag=5,

Prec int(2) not null flag=6)

engine=CONNECT table_type='WMI' catfunc=col;

Now the query:

select * from csprodcol;

will display the result:

Column_name Data_Type Type_name Length Prec

Caption 1 CHAR 255 1

Description 1 CHAR 255 1

IdentifyingNumber 1 CHAR 255 1

Name 1 CHAR 255 1

SKUNumber 1 CHAR 255 1

UUID 1 CHAR 255 1

Vendor 1 CHAR 255 1

Version 1 CHAR 255 1

This can help to define the columns of the matching normal table.

Note 1: The column length, for the Info table as well as for the normal table, can be chosen arbitrarily, it

just must be enough to contain the returned information.

Note 2: The Scale column returns 1 for text columns (meaning case insensitive); 2 for float and double

columns; and 0 for other numeric columns.

Catalog Table result size limit

Because catalog tables are processed like the information retrieved by “Discovery” when table columns

are not specified in a Create Table statement, their result set is entirely retrieved and memory allocated.

By default, this allocation is done for a maximum return line number of:

Catfunc Max lines

Drivers 256

Data Sources 512

Columns 20,000

Tables 10,000

When the number of lines retrieved for a table is more than this maximum, a warning is issued by

CONNECT. This is mainly prone to occur with columns (and tables) with some data sources having

many tables when the table name is not specified.

If this happens, it is possible to increase the default limit using the MAXRES option, for instance:

- 154 -

create table allcols engine=connect table_type=odbc

connection='DSN=ORACLE_TEST;UID=system;PWD=manager'

option_list='Maxres=110000' catfunc=columns;

Indeed, because the entire table result is memorized before the query is executed; the returned value

would be limited even on a query such as:

select count(*) from allcols;

- 155 -

Virtual and Special Columns
CONNECT supports MariaDB virtual and persistent columns. It is also possible to declare a column as

being a CONNECT special column. Let us see on an example how this can be done.

The boys table we have seen previously can be recreated as:

create table boys (

linenum int(6) not null default 0 special=rowid,

name char(12) not null,

city char(12) not null,

birth date not null date_format='DD/MM/YYYY',

hired date not null date_format='DD/MM/YYYY' flag=36,

agehired int(3) as (timestampdiff(year,hired,birth)) virtual,

fn char(100) not null default '' special=FILEID)

engine=CONNECT table_type=FIX file_name='boys.txt' lrecl=48;

We have defined two CONNECT special columns. You can give them any name; it is the field SPECIAL

option that specifies the special column functional name.

Note: the default values specified for the special columns are ignored by CONNECT. They are specified

just to prevent getting warning messages when inserting new rows.

For the definition of the agehired virtual column, no CONNECT options can be specified as it has no

offset or length, not being stored in the file.

The command:

select * from boys where city = 'boston';

Will display the following result set as:

linenum name city birth hired agehired fn

1 John Boston 1986-01-

25

2010-06-

02

24 d:\mariadb\sql\data\boys.txt

2 Henry Boston 1987-06-

07

2008-04-

01

20 d:\mariadb\sql\data\boys.txt

6 Bill Boston 1986-09-

11

2008-02-

10

21 d:\mariadb\sql\data\boys.txt

Existing special columns are listed in the following table:

Special Name Type Description of the column value

ROWID Integer The row ordinal number in the table or partition. This not quite equivalent

to a virtual column with an auto increment of 1 because rows are

renumbered when deleting rows.

ROWNUM Integer The row ordinal number in the file or group of rows. This is different from

ROWID for multiple tables, TBL/XCOL/OCCUR/PIVOT tables, XML

tables with a multiple column, and for DBF tables where ROWNUM

includes soft deleted rows.

FILEID

FDISK

FPATH

FNAME

FTYPE

String FILEID returns the full name of the file this row belongs to. Useful in

particular for multiple tables represented by several files. The other

special columns can be used to retrieve only one part of the full name.

TABID String The name of the table this row belongs to. Useful for TBL tables.

- 156 -

Special Name Type Description of the column value

PARTID String The name of the partition this row belongs to. Specific to partitioned

tables.

SERVID String The name of the federated server or server host used by a MYSQL table.

“ODBC” for an ODBC table, “JDBC” for a JDBC table and “Current” for

all other table types.

Note: CONNECT does not currently support auto incremented columns. However, ROWID special

columns provide in some cases functionalities like auto incremented columns.

Note: CONNECT cannot support dynamic columns because they need Blob support.

- 157 -

Indexing
Indexing is one of the main ways to optimize queries. Key columns, in particular when they are used to

join tables, should be indexed. But what should be done for columns that have only few distinct values?

If they are randomly placed in the table, they should not be indexed because reading many rows in

random order can be slower than reading the entire table sequentially. However, if the values are sorted

or clustered, block indexing can be a good alternative because CONNECT use it while still reading the

table sequentially.

CONNECT provides five indexing types:

1. Standard Indexing

2. Block Indexing

3. Remote Indexing

4. Dynamic Indexing

5. Virtual Indexing

Standard Indexing
CONNECT standard indexes are created and used as the ones of other storage engines although they

have a specific internal format. The CONNECT handler supports the use of standard indexes for most of

the file based table types.

You can define them in the CREATE TABLE statement, or either using the CREATE INDEX statement or the

ALTER TABLE statement. In all cases, the index files are automatically made. They can be dropped either

using the DROP INDEX statement or the ALTER TABLE statement, and this erases the index files.

Indexes are automatically reconstructed when the table is created, modified by INSERT, UPDATE or

DELETE commands, or when the SEPINDEX option is changed. If you have a lot of changes to do on a table

at one moment, you can use table locking to prevent indexes to be reconstructed after each statement.

The indexes will be reconstructed when unlocking the table. For instance:

lock table t1 write;

insert into t1 values(...);

insert into t1 values(...);

...

unlock tables;

If a table was modified by an external application that does not handle indexing, the indexes must be

reconstructed to prevent returning false or incomplete results. To do this, use the OPTIMIZE TABLE

command.

For outward tables, index files are not erased when dropping the table. This is the same as for the data

file and preserves the possibility of several users using the same data file via different tables.

Unlike other handlers, CONNECT constructs the indexes as files that are named by default from the data

file name, not from the table name, and located in the data file directory. Depending on the SEPINDEX

table option, indexes are saved in a unique file or in separate files (if SEPINDEX is true). For instance, if

indexes are in separate files, the primary index of the table dept.dat of type DOS is a file named

dept_PRIMARY.dnx. This makes possible to define several tables on the same data file, with eventual

different options such as mapped or not mapped, and to share the index files as well.

If the index file should have a different name, for instance because several tables are created on the same

data file with different indexes, specify the base index file name with the XFILE_NAME option.

Note 1: Indexed column must be declared NOT NULL, CONNECT not supporting indexes containing null

values.

Note 2: MRR is used by standard indexing if it is enabled.

- 158 -

Note 3: Prefix indexing is not supported. If specified, CONNECT engine ignores the prefix and builds a whole index.

Handling index errors

The way CONNECT handles indexing is very specific. All table modifications are done regardless of

indexing. Only after a table has been modified, or when an OPTIMIZE TABLE command is send, the indexes

are made. If an error occurs, the corresponding index is not made. However, CONNECT being a non-

transactional engine; it is unable to roll back the changes made to the table. The main causes of indexing

errors are:

• Trying to index a nullable column. In this case, you can alter the table to declare the column as

not nullable or, if the column is nullable indeed, make it not indexed.

• Entering duplicate values in a column indexed by a unique index. In this case, if the index was

wrongly declared as unique, alter is declaration to reflect this. If the column should really

contain unique values, you must manually remove or update the duplicate values.

In both cases, after correcting the error, remake the indexes with the OPTIMIZE TABLE command.

Index file mapping

To accelerate the indexing process, CONNECT makes an index structure in memory from the index file.

This can be done by reading the index file or using it as if it was in memory by “file mapping”. On

enabled version, file mapping is used according to the Boolean connect_indx_map system variable. Set

it to 0 (file read) or 1 (file mapping)

Block Indexing
To accelerate input/output, CONNECT uses when possible a read/write mode by blocks of n rows, n

being the value given in the BLOCK_SIZE option of the Create Table, or a default value depending on the

table type. This is automatic for fixed files (FIX, BIN, DBF or VEC), but must be specified for variable

files (DOS, CSV or FMT).

For blocked tables, further optimization can be achieved if the data values for some columns are

“clustered” meaning that they are not evenly scattered in the table but grouped in some consecutive rows.

Block indexing permits to skip blocks in which no rows fulfill a conditional predicate without having

even to read the block. This is true in particular for sorted columns.

You indicate this when creating the table by using the DISTRIB=d column option. The enum value d can

be scattered, clustered, or sorted. In general, only one column can be sorted. Block indexing is used only

for clustered and sorted columns.

Difference between standard indexing and block indexing

• Block indexing is internally handled by CONNECT while reading sequentially a table data. This

means that when standard indexing is used on a table, block indexing is not used.

• In a query, only one standard index can be used. However, block indexing can combine the

restrictions coming from a where clause implying several clustered/sorted columns.

• The block index files are faster to make and much smaller than standard index files.

Notes for this Release:

• On all operations that create or modify a table, CONNECT automatically calculates or recalculates

and saves the mini/maxi or bitmap values for each block, enabling it to skip block containing no

acceptable values. In the case where the optimize file does not correspond anymore to the table,

because it has been accidentally destroyed, or because some column definitions have been altered,

you can use the OPTIMIZE TABLE command to reconstruct the optimization file.

• Sorted column special processing is currently restricted to ascending sort. Column sorted in

descending order must be flagged as clustered. Improper sorting is not checked in Update or Insert

operations but is flagged when optimizing the table.

• Block indexing can be done in two ways. Keeping the min/max values existing for each block, or

keeping a bitmap allowing knowing what column distinct values are met in each block. This second

- 159 -

ways often gives a better optimization, except for sorted columns for which both are equivalent. The

bitmap approach can be done only on columns having not too many distinct values. This is estimated

by the MAX_DIST option value associated to the column when creating the table. Bitmap block

indexing will be used if this number is not greater than the MAXBMP setting (currently 32).

• CONNECT cannot perform block indexing on case insensitive character columns. To force block

indexing on a character column, specify its charset as not case insensitive, for instance:

sitmat char(1) not null collate 'latin1_bin'

distrib=clustered max_dist=8,

Remote Indexing
Remote indexing is specific to the MYSQL table type. It is equivalent to what the FEDERATED storage

does. A MYSQL table does not support indexes per se. Because access to the table is handled remotely, it

is the remote table that supports the indexes. What the MYSQL table does is just to add to the SELECT

command sent to the remote server a where clause allowing the remote server to use indexing when

applicable.

Note however that because CONNECT adds when possible all or part of the where clause of the original

query, this happens often even if the remote indexed column is not declared locally indexed. The only,

but very important, case a column should be locally declared indexed is when it is used to join tables.

Otherwise, the required where clause would not be added to the sent SELECT query.

Dynamic Indexing
An indexed created as “dynamic” is a standard index which, in some cases, can be reconstructed for a

specific query. This happens for some queries where two tables are joined by an indexed key column. If

the “from” table is big and the “to” big table reduced in size because of a where clause, it can be

worthwhile to reconstruct the index on this reduced table.

Because of the time added by reconstructing the index, this will be valuable only if the time gained by

reducing the index size if more than this reconstruction time. Therefore, this should not be done if the

“from” table is small because there will not be enough row joining to compensate the additional time.

Otherwise, the gain of using a dynamic index is:

• Indexing time is a little faster if the index is smaller.

• The join process will return only the rows fulfilling the where clause.

• Because the table is read sequentially when reconstructing the index there no need for MRR.

• Constructing the index can be faster if the table is reduced by block indexing.

• While constructing the index, CONNECT also stores in memory the values of other used columns.

This last point is particularly important. It means that after the index is reconstructed, the join is done on

a temporary memory table.

Unfortunately, storage engines being called independently by MariaDB for each table, CONNECT has

no global information to decide when it is good to use dynamic indexing. Therefore, you should use it

only on cases where you see that some important join queries take a very long time and only on columns

used for joining the table. How to declare an index to be dynamic is by using the Boolean DYNAM index

option. For instance, the query:

select d.diag, count(*) cnt from diag d, patients p where d.pnb =

p.pnb and ageyears < 17 and county = 30 and drg <> 11 and d.diag

between 4296 and 9434 group by d.diag order by cnt desc;

Such a query joining the diag table to the patients table may last a very long time if the tables are big.

To declare the primary key on the pnb column of the patients table to be dynamic:

alter table patients drop primary key;

alter table patients add primary key (pnb) comment 'DYNAMIC' dynam=1;

- 160 -

Note 1: The comment is not mandatory here but useful to see that the index is dynamic if you use the

SHOW INDEX command.

Note 2: There is currently no way to just change the DYNAM option without dropping and adding the

index. This is unfortunate because it takes time.

Virtual Indexing
It applies only to the virtual tables of type VIR and must be made on a column specifying

SPECIAL=ROWID or SPECIAL=ROWNUM.

- 161 -

Partitioning and Sharding
CONNECT supports the MySQL/MariaDB partition specification. It is done is a way similar than

MyISAM or InnoDB do by using the PARTITION engine that must be enabled for this to work. This type

of partitioning is sometimes referred as “horizontal partitioning”.

Partitioning enables you to distribute portions of individual tables across a file system according to rules

which you can set largely as needed. In effect, different portions of a table are stored as separate tables

in different locations. The user-selected rule by which the division of data is accomplished is known as

a partitioning function, which in MariaDB can be the modulus, simple matching against a set of ranges

or value lists, an internal hashing function, or a linear hashing function.

CONNECT takes this notion a step further, by providing two types of partitioning:

1. File partitioning. Each partition is stored in a separate file like in multiple tables.

2. Table partitioning. Each partition is stored in a separate table like in TBL tables.

Partition engine issues

Using partitions sometimes requires creating the tables in an unnatural way to avoid some error due to

several partition engine bugs:

1. Engine specific column and index options are not recognized and cause a syntax error when the

table is created. The workaround is to create the table in two steps, a CREATE TABLE statement

followed by an ALTER TABLE statement.

2. The connection string, when specified for the table, is lost by the partition engine. The

workaround is to specify the connection string in the OPTION_LIST.

3. MySQL upstream bug #71095. In case of list columns partitioning it sometimes causes a false

“impossible where” clause to be raised. This makes a wrong void result returned when it should

not be void. There is no workaround but this bug should be hopefully fixed.

The following examples are using the above workaround syntax to address these issues.

File Partitioning
File partitioning applies to file based CONNECT table types. Like for multiple tables, physical data is

stored in several files instead of just one. The differences from multiple tables are:

1. Data is distributed amongst the different files following the partition rule.

2. Unlike multiple tables, partitioned tables are not read only.

3. Unlike multiple tables, partitioned tables can be indexable.

4. The file names are generated from the partition names.

5. Query pruning is automatically made by the partition engine.

The table file names are generated differently depending on whether the table is an inward or outward

table. For inward tables, for which the file name is not specified, the partition file names are:

Data file name: table_name#P#partition_name.table_file_type

Index file name: table_name#P#partition_name.index_file_type

For instance, for the table:

CREATE TABLE t1 (

id INT KEY NOT NULL,

msg VARCHAR(32))

ENGINE=CONNECT TABLE_TYPE=FIX

partition by range(id) (

partition first values less than(10),

partition middle values less than(50),

partition last values less than(MAXVALUE));

- 162 -

CONNECT will generate in the current data directory the files:

t1#P#first.fix

t1#P#first.fnx

t1#P#middle.fix

t1#P#middle.fnx

t1#P#last.fix

t1#P#last.fnx

This is similar than what the partition engine does for other engines. As a matter of facts, CONNECT

partitioned inward tables behave like other engines partition tables do. Just the data format is different.

Note: If sub-partitioning is used, inward table files and index files are named:

table_name#P#partition_name#SP#subpartition_name.type

table_name#P#partition_name#SP#subpartition_name.index_type

Outward Tables

The real problems occur with outward tables, in particular when they are created from already existing

files. The first issue is to make the partition table use the correct existing file names. The second one,

only for already existing not void tables, is to be sure the partitioning function match the distribution of

the data already existing in the files.

The first issue is addressed by the way data file names are constructed. For instance, let us suppose we

want to make a table from the fixed formatted files:

E:\Data\part1.txt

E:\Data\part2.txt

E:\Data\part3.txt

This can be done by creating a table such as:

create table t2 (

id int not null,

msg varchar(32),

index XID(id))

engine=connect table_type=FIX file_name='E:/Data/part%s.txt'

partition by range(id) (

partition `1` values less than(10),

partition `2` values less than(50),

partition `3` values less than(MAXVALUE));

The rule is that for each partition the matching file name is internally generated by replacing in the given

FILE_NAME option value the “%s” part by the partition name.

If the table was initially void, further inserts will populate it according to the partition function. However,

if the files did exist and contained data, this is your responsibility to determine what partition function

matches the data distribution in them. This means in particular that partitioning by key or by hash cannot

be used (except in exceptional cases) because you have almost no control to what the used algorithm

does.

In the example above, there is no problem if the table is initially void, but if it is not, serious problems

can be met if the initial distribution does not match the table distribution. Supposing a row in which “id”

as the value 12 was initially contained in the part1.txt file, it will be seen when selecting the whole table

but if you ask:

select * from t2 where id = 12;

- 163 -

The result will have 0 rows. This is because, according to the partition function query, pruning will only

look inside the second partition and will miss the row that is in the wrong partition.

One way to check for wrong distribution if for instance to compare the results from queries such as:

SELECT partition_name, table_rows FROM

information_schema.partitions WHERE table_name = 't2';

And

SELECT CASE WHEN id < 10 THEN 1 WHEN id < 50 THEN 2 ELSE 3 END

AS pn, COUNT(*) FROM part3 GROUP BY pn;

If they match, the distribution can be correct although this does not prove it. However, if they do not

match, the distribution is surely wrong.

Partitioning on a Special Column

There are some cases where the files of a multiple table do not contain columns that can be used for range

or list partitioning. For instance, let’s suppose we have a multiple table based on the following files:

tmp/boston.txt

tmp/chicago.txt

tmp/atlanta.txt

Each of them containing the same kind of data:

ID: int

First_name: varchar(16)

Last_name: varchar(30)

Birth: date

Hired: date

Job: char(10)

Salary: double(8,2)

A multiple table can be created on them, for instance by:

create table mulemp (

id int NOT NULL,

first_name varchar(16) NOT NULL,

last_name varchar(30) NOT NULL,

birth date NOT NULL date_format='DD/MM/YYYY',

hired date NOT NULL date_format='DD/MM/YYYY',

job char(10) NOT NULL,

salary double(8,2) NOT NULL

) engine=CONNECT table_type=FIX file_name='tmp/*.txt' multiple=1;

The issue is that if we want to create a partitioned table on these files, there are no columns to use for

defining a partition function. Each city file can have the same kind of column values and there is no way

to distinguish them.

However, there is a solution. It is to add to the table a special column that will be used by the partition

function. For instance, the new table creation can be done by:

create table partemp (

id int NOT NULL,

first_name varchar(16) NOT NULL,

last_name varchar(30) NOT NULL,

birth date NOT NULL date_format='DD/MM/YYYY',

hired date NOT NULL date_format='DD/MM/YYYY',

- 164 -

job char(16) NOT NULL,

salary double(10,2) NOT NULL,

city char(12) default 'boston' special=PARTID,

index XID(id)

) engine=CONNECT table_type=FIX file_name='E:/Data/Test/%s.txt';

alter table partemp

partition by list columns(city) (

partition `atlanta` values in('atlanta'),

partition `boston` values in('boston'),

partition `chicago` values in('chicago'));

Note 1: we had to do it in two steps because of the column CONNECT options.

Note 2: the special column PARTID returns the name of the partition in which the row is located.

Note 3: here we could have used the FNAME special column instead because the file name is specified

as being the partition name.

This may seem rather stupid because it means for instance that a row will be in partition boston if it

belongs to the partition boston! However, it works because the partition engine doesn’t know about

special columns and behaves as if the city column was a real column.

What happens if we populate it by?

insert into partemp(id,first_name,last_name,birth,hired,job,salary) values

(1205,'Harry','Cover','1982-10-07','2010-09-21','MANAGEMENT',125000.00);

insert into partemp values

(1524,'Jim','Beams','1985-06-18','2012-07-25','SALES',52000.00,'chicago'),

(1431,'Johnny','Walker','1988-03-12','2012-08-09','RESEARCH',46521.87,'boston'),

(1864,'Jack','Daniels','1991-12-01','2013-02-16','DEVELOPMENT',63540.50,'atlanta');

The value given for the city column (explicitly or by default) will be used by the partition engine to

decide in which partition to insert the rows. It will be ignored by CONNECT (a special column cannot

be given a value) but later will return the matching value. For instance:

select city, first_name, job from partemp where id in (1524,1431);

This query returns:

city first_name job

boston Johnny RESEARCH

chicago Jim SALES

Everything works as if the city column was a real column contained in the table data files.

Partitioning of zipped tables

Two cases are currently supported:

If a table is based on several zipped files, portioning is done the standard way as above. This is the

file_name option specifying the name of the zip files that shall contain the ‘%s’ part used to generate the

file names.

If a table is based on only one zip file containing several entries, this will be indicated by placing the

‘%s’ part in the entry option value.

Note: If a table is based on several zipped files each containing several entries, only the first case is

possible. Using sub-partitioning to make partitions on each entry is not supported yet.

- 165 -

Table Partitioning
With table partitioning, each partition is physically represented by a sub-table. Compared to standard

partitioning, this brings the following features:

1. The partitions can be tables driven by different engines. This relieves the current existing

limitation of the partition engine.

2. The partitions can be tables driven by engines not currently supporting partitioning.

3. Partition tables can be located on remote servers, enabling table sharding.

4. Like for TBL tables, the columns of the partition table do not necessarily match the columns of

the sub-tables.

The way it is done is to create the partition table with a table type referring to other tables, PROXY, MYSQL,

ODBC or JDBC. Let us see how this is done on a simple example. Supposing we have created the

following tables:

create table xt1 (

id int not null,

msg varchar(32))

engine=myisam;

create table xt2 (

id int not null,

msg varchar(32)); /* engine=innoDB */

create table xt3 (

id int not null,

msg varchar(32))

engine=connect table_type=CSV;

We can for instance create a partition table using these tables as physical partitions by:

create table t3 (

id int not null,

msg varchar(32))

engine=connect table_type=PROXY tabname='xt%s'

partition by range columns(id) (

partition `1` values less than(10),

partition `2` values less than(50),

partition `3` values less than(MAXVALUE));

Here the name of each partition sub-table will be made by replacing the ‘%s’ part of the tabname option

value by the partition name. Now if we do:

insert into t3 values

(4, 'four'),(7,'seven'),(10,'ten'),(40,'forty'),

(60,'sixty'),(81,'eighty one'),(72,'seventy two'),

(11,'eleven'),(1,'one'),(35,'thirty five'),(8,'eight');

The rows will be distributed in the different sub-tables according to the partition function. This can be

seen by executing the query:

select partition_name, table_rows from

information_schema.partitions where table_name = 't3';

This query replies:

- 166 -

partition_name table_rows

1 4

2 4

3 3

Query pruning is of course automatic, for instance:

explain partitions select * from t3 where id = 81;

This query replies:

id select_type table partitions type possible_keys key key_len ref rows Extra

1 SIMPLE part5 3 ALL <null> <null> <null> <null> 22 Using where

When executing this select query, only sub-table xt3 will be used.

Indexing with Table Partitioning

Using the PROXY table type seems natural. However, in this current version, the issue is that PROXY

(and ODBC) tables are not indexable. Therefore, if you want the table to be indexed, you must use the

MYSQL table type. The CREATE TABLE statement will be almost the same:

create table t4 (

id int key not null,

msg varchar(32))

engine=connect table_type=MYSQL tabname='xt%s'

partition by range columns(id) (

partition `1` values less than(10),

partition `2` values less than(50),

partition `3` values less than(MAXVALUE));

The column id is declared as a key, and the table type is now MYSQL. This makes Sub-tables to be

accessed by calling a MySQL server as MYSQL tables do. Note that this modifies only the way

CONNECT sub-tables are accessed because other engine tables where silently accessed this way.

However, indexing just make the partitioned table to use “remote indexing” the way FEDERATED tables

do. This means that when sending the query to retrieve the table data, a where clause will be added to

the query. For instance, let’s suppose you ask:

select * from t4 where id = 7;

The query sent to the server will be:

SELECT `id`, `msg` FROM `xt1` WHERE `id` = 7

On a query like this one, it does not change much because the where clause could have been added

anyway by the cond_push function, but it does make a difference in case of join. The main thing to

understand is that real indexing is done by the called table and therefore that it should be indexed.

This also means that the xt1, xt2, and xt3 table indexes should be made separately because creating the

t2 table as indexed does not make the indexes on the sub-tables.

Sharding with Table Partitioning

Using table partitioning can have one more advantage. Because the sub-tables can address a table located

on another server, it is possible to shard a table on separate servers and hardware machines. This may be

required to access as one table data already located on several remote machines, such as servers of a

company branches. Or it can be just used to split a huge table for performance reason.

- 167 -

For instance, supposing we have created the following tables:

create table rt1 (id int key not null, msg varchar(32))

engine=federated connection='mysql://root@host1/test/sales';

create table rt2 (id int key not null, msg varchar(32))

engine=federated connection='mysql://root@host2/test/sales';

create table rt3 (id int key not null, msg varchar(32))

engine=federated connection='mysql://root@host3/test/sales';

Creating the partition table accessing all these will be almost like what we did with the t4 table:

create table t5 (

id int key not null,

msg varchar(32))

engine=connect table_type=MYSQL tabname='rt%s'

partition by range columns(id) (

partition `1` values less than(10),

partition `2` values less than(50),

partition `3` values less than(MAXVALUE));

The only difference is the tabname option now referring to the rt1, rt2, and rt3 tables. However, even if

it works, this is not the best way to do it. This is because accessing a table via the MySQL API is done

twice per table. Once by CONNECT to access the FEDERATED table on the local server, then a second

time by FEDERATED engine to access the remote table.

The CONNECT MYSQL table type being used anyway, you’d rather use it to directly access the remote

tables. Indeed, the partition names can also be used to modify the connection URL’s. For instance, in the

case shown above, the partition table can be created as:

create table t6 (

id int key not null,

msg varchar(32))

engine=connect table_type=MYSQL

option_list='connect=mysql://root@host%s/test/sales'

partition by range columns(id) (

partition `1` values less than(10),

partition `2` values less than(50),

partition `3` values less than(MAXVALUE));

Several things can be noted here:

1. As we have seen before, the partition engine currently loses the connection string. This is why

it was specified as “connect” in the option list.

2. For each partition sub-tables, the “%s” part of the connection string has been replaced by the

partition name.

3. It is not needed anymore to define the rt1, rt2, and rt3 tables (even it does not harm) and the

FEDERATED engine is no more used to access the remote tables.

This is a simple case where the connection string is almost the same for all the sub-tables. But what if

the sub-tables are accessed by very different connection strings? For instance:

For rt1: connection='mysql://root:tinono@127.0.0.1:3307/test/xt1'

For rt2: connection='mysql://foo:foopass@denver/dbemp/xt2'

For rt3: connection='mysql://root@huston :5505/test/tabx'

- 168 -

There are two solutions. The first one is to use the parts of the connection string to differentiate as

partition names:

create table t7 (

id int key not null,

msg varchar(32))

engine=connect table_type=MYSQL

option_list='connect=mysql://%s'

partition by range columns(id) (

partition `root:tinono@127.0.0.1:3307/test/xt1` values less than(10),

partition `foo:foopass@denver/dbemp/xt2` values less than(50),

partition `root@huston :5505/test/tabx` values less than(MAXVALUE));

The second one, allowing avoiding too long partition names, is to create federated servers to access the

remote tables (if they do not already exist, else just use them). For instance, the first one could be:

create server `server_one` foreign data wrapper 'mysql'

options

 (host '127.0.0.1',

 database 'test',

 user 'root',

 password 'tinono',

 port 3307);

Similarly, “server_two” and “server_three” would be created and the final partition table would be

created as:

create table t8 (

id int key not null,

msg varchar(32))

engine=connect table_type=MYSQL

option_list='connect=server_%s'

partition by range columns(id) (

partition `one/xt1` values less than(10),

partition `two/xt2` values less than(50),

partition `three/tabx` values less than(MAXVALUE));

It would be even simpler if all remote tables had the same name on the remote databases, for instance if

they all were named xt1, the connection string could be set as “server_%s/xt1” and the partition names

would be just “one”, “two”, and “three”.

Sharding on a Special Column

The technique we have seen above with file partitioning is also available with table partitioning.

Companies willing to use as one table data sharded on the company branch servers can, as we have seen,

add to the table create definition a special column. For instance:

create table t9 (

id int not null,

msg varchar(32),

branch char(16) default 'main' special=PARTID,

index XID(id))

engine=connect table_type=MYSQL

option_list='connect=server_%s/sales'

partition by range columns(id) (

partition `main` values in('main'),

partition `east` values in('east'),

partition `west` values in('west'));

- 169 -

This example assumes that federated servers had been created named “server_main”, “server_east” and

“server_west” and that all remote tables are named “sales”. Note also that in this example, the column id

is no more a key.

Current Partition Limitations
Partition names are limited to 64 characters.

Because the partition engine was written before some other engines were added to MariaDB, the way it

works is sometime incompatible with these engines, in particular with CONNECT.

Update statement

With the sample tables above, you can do update statements such as:

update t2 set msg = 'quatre' where id = 4;

It works perfectly and is accepted by CONNECT. However, let us consider the statement:

update t2 set id = 41 where msg = 'four';

This statement is not accepted by CONNECT. The reason is that the column id being part of the partition

function, changing its value may require the modified row to be moved to another partition. The way it

is done by the partition engine is to delete the old row and to re-insert the new modified one. However,

this is done in a way that is not currently compatible with CONNECT (remember that CONNECT

supports UPDATE in a specific way for the table type MYSQL)

This limitation could be temporary. Meanwhile the workaround is to manually do what is done above,

Deleting the row to modify and inserting the modified row:

delete from t2 where id = 4;

insert into t2 values(41, 'four');

Alter Table statement

For all CONNECT outward tables, the ALTER TABLE statement does not make any change in the table

data. This is why ALTER TABLE should not be used to modify the partition definition, except of course to

correct a wrong definition. Note that using ALTER TABLE to create a partition table in two steps because

column options would be lost is valid as it applies to a table that is not yet partitioned.

As we have seen, it is also safe to use it to create or drop indexes. Otherwise, a simple rule of thumb is

to avoid altering a table definition and better drop and re-create a table whose definition must be

modified. Just remember that for outward CONNECT tables, dropping a table does not erase the data

and that creating it does not modify existing data.

Rowid special column

Each partition being handled separately as one table, the ROWID special column returns the rank of the

row in its partition, not in the whole table. This means that for partition tables ROWID and ROWNUM are

equivalent.

- 170 -

Using CONNECT
The main characteristic of CONNECT is to enable accessing data scattered on a machine as if it was a

centralized database. This, and the fact that file locking is not used by connect (data files are open and

closed for each query) makes CONNECT very useful for importing or exporting data into or from a

MariaDB database and also for all types of Business Intelligence applications. However, it is not suited

for transactional applications.

For instance, the index type used by CONNECT is closer to bitmap indexing than to B-trees. It is very

fast for retrieving result but not when updating is done. In fact, even if only one indexed value is modified

in a big table, the index is entirely remade (yet this being four to five times faster than for a b-tree index).

But normally in Business Intelligence applications, files are not modified so often.

If you are using CONNECT to analyze files that can be modified by an external process, the indexes are

of course not modified by it and become outdated. Use the OPTIMIZE TABLE command to update them

before using the tables based on them.

This means also that CONNECT is not designed to be used by centralized servers, which are mostly used

for transactions and often must run a long time without human intervening.

Performance

Performances vary a great deal depending on the table type. For instance, ODBC tables are only retrieved

as fast as the other DBMS can do. If you have a lot of queries to execute, the best way to optimize your

work can be sometime to translate the data from one type to another. Fortunately, this is very simple with

CONNECT. Fixed format like FIX, BIN or VEC tables can be created from slower ones by commands

such as:

Create table fastable table_specs select * from slowtable;

FIX and BIN are often the better choice because the I/O functions are done on blocks of BLOCK_SIZE

rows. VEC tables can be very efficient for tables having many columns only a few being used in each

query. Furthermore, for tables of reasonable size, the MAPPED option can very often speed up many

queries.

Create Table statement

Be aware of the two broad kinds of CONNECT tables:

Inward They are table whose file name is not specified at create. An empty file will be given a default

name (tabname.tabtype) and will be populated like for other engines. They do not require the

FILE privilege and can be used for testing purpose.

Outward They are all other CONNECT tables and access external data sources or files. They are the true

useful tables but require the FILE privilege.

Drop Table statement

For outward tables, the Drop Table statement just removes the table definition but does not erase the

table data. However, dropping an inward table also erase the table data as well.

AlterTable statement

Be careful using the ALTER TABLE statement with outward tables. Currently the data compatibility is not

tested and the modified definition can become incompatible with the data. In particular, Alter modifies

the table definition only but does not modify the table data. Consequently, the table type should not be

modified this way, except to correct an incorrect definition. Also, adding, dropping or modifying columns

may be wrong because the default offset values (when not explicitly given by the FLAG option) may be

wrong when recompiled with missing columns.

Safe use of ALTER is for indexing, as we have seen earlier, and to change options such as MAPPED or

HUGE those do not impact the data format but just the way the data file is accessed. Modifying the

- 171 -

BLOCK_SIZE option is all right with FIX, BIN, DBF, split VEC tables; however it is unsafe for VEC

tables that are not split (only one data file) because at their creation the estimate size has been made a

multiple of the block size. This can cause errors if this estimate is not a multiple of the new value of the

block size.

In all cases, it is safer to drop and re-create the table (outward tables) or to make another one from the

table that must be modified. This is as fast as altering the table because table data is not modified.

Update and Delete for file tables

CONNECT can execute these commands following two different algorithms:

1. It can do it in place, directly modifying rows (update) or moving rows (delete) within the table

file. This is a fast way to do it when indexing is used.

2. It can do it using a temporary file to make the changes. This is required when updating variable

record length tables and is more secure in all cases.

The choice between these algorithms depends on the session variable connect_use_tempfile. This is an

enum session variable that can be given the values:

Value Description

NO The first algorithm is always used. Because it can cause errors when updating variable

record length tables, this value should be set only for testing.

AUTO This is the default value. It leaves CONNECT choose the algorithm to use. Currently it is

equivalent to NO except when updating variable record length tables (DOS, CSV or FMT)

with file mapping forced to OFF.

YES Using a temporary file is chosen with some exceptions that are: when file mapping is ON,

for VEC tables and when deleting from DBF tables (soft delete) For variable record length

tables, file mapping is forced to OFF.

FORCE Like YES but forcing file mapping to be OFF for all table types.

TEST Reserved for CONNECT development.

The default AUTO value favors the best response time. Using a temporary file is longer but leaves the

table unchanged when the process is interrupted manually or by errors.

Importing file data into MariaDB tables
Directly using external (file) data has many advantages, such as to work on “fresh” data produced for

instance by cash registers, telephone switches, or scientific apparatus. However, you may want in some

case to import external data into your MariaDB database. This is extremely simple and flexible using the

CONNECT handler. For instance, let us suppose you want to import the data of the xsample.xml XML

file previously given in example into a MyISAM table called biblio belonging to the connect database.

All you have to do is to create it by:

create table biblio engine=myisam select * from xsampall2;

This last statement creates the MyISAM table and inserts the original XML data, translated to tabular

format by the xsampall2 CONNECT table, into the MariaDB biblio table. Note that further

transformation on the data could have been achieved by using a more elaborate Select statement in the

Create statement, for instance using filters, alias or applying functions to the data. However, because the

Create Table process copies table data, later modifications of the xsample.xml file will not change the

biblio table and changes to the biblio table will not modify the xsample.xml file.

All these can be combined or transformed by further SQL operations. This makes working with

CONNECT much more flexible (but not so fast) than just using the LOAD statement.

- 172 -

Exporting data from MariaDB
This is obviously possible with CONNECT, in particular for all formats not supported by the standard

‘Into File’ feature of the Select statement. Let us consider the query:

select plugin_name handler, plugin_version version, plugin_author

author, plugin_description description, plugin_maturity maturity

from information_schema.plugins where plugin_type = 'STORAGE ENGINE';

Supposing you want to get the result of this query into a file handlers.htm in XML/HTML format,

allowing displaying it on an Internet browser, this is how you can do it:

Just create the CONNECT table that will be used to make the file:

create table handout

engine=CONNECT table_type=XML file_name='handout.htm' header=yes

option_list='name=TABLE,coltype=HTML,attribute=border=1;cellpadding=5

,headattr=bgcolor=yellow'

select plugin_name handler, plugin_version version, plugin_author

author, plugin_description description, plugin_maturity maturity

from information_schema.plugins where plugin_type = 'STORAGE ENGINE';

Here the column definition is not given and will come from the Select statement following the Create.

The CONNECT options are the same we have seen previously. This will do both actions, creating the

matching handlers CONNECT table and ‘filling’ it with the query result.

Note 1: This could not be done in only one statement if the table type had required using explicit

CONNECT column options. In this case, firstly create the table, and then populate it with an Insert

statement.

Note 2: The source “plugins” table column “description” is a long text column, data type not supported

for CONNECT tables. It has been silently internally replaced by varchar(n), n being the value of the

connect_conv_size global variable.

Condition Pushdown
The ODBC, JDBC, MYSQL, TBL and WMI table types use condition pushdown in order to restrict the

number of rows returned by the RDBS source or the WMI component. Since MariaDB 5.5 the engine

condition pushdown is OFF by default. It is therefore necessary to set it ON, for instance by:

set optimizer_switch='engine_condition_pushdown=on';

Or starting mysqld with this parameter set to ON, for instance:

mysqld --console --engine_condition_pushdown=on

Note 1: specifying –console is important to have some error messages from CONNECT printed because

MariaDB does not always retrieve them.

Note 2: since MariaDB 10.0.4, the CONDITION_PUSHDOWN argument is no more accepted. However, it

is no more needed because CONNECT uses condition pushdown unconditionally.

Current Status of the CONNECT Handler
The current CONNECT handler is a GA version. It was written starting both from an aborted project

written for MySQL in 2004 and from the “DBCONNECT” program. It was tested on all the examples

described in this document, and is distributed with a set of 53 test cases. Here is a not limited list of future

developments:

1. Adding more table types.

2. Make more tests files (53 are already made)

3. Supporting parallel execution of TBL sub-tables when executed on different servers.

- 173 -

4. Adding more data types, in particular unsigned ones (done for unsigned).

5. Supporting indexing on nullable and decimal columns.

6. Adding more optimize tools (block indexing, dynamic indexing, etc.) (done)

7. Supporting MRR (done)

8. Supporting partitioning (done)

No programs are bug free, especially new ones. Please report all bugs or documentation errors using the

means provided by MariaDB.

Security

The use of the CONNECT engine requires the FILE privilege, except for “inward” tables. This should not

be an important restriction. The use of CONNECT “outward” tables on a remote server seems of limited

interest without knowing the files existing on it and must be protected anyway. On the other hand, using

it on the local client machine is not an issue because it is always possible to create locally a user with the

FILE privilege.

- 174 -

- 175 -

Appendix A
Some JSON sample files.

Expense.json

[

 {

 "WHO": "Joe",

 "WEEK": [

 {

 "NUMBER": 3,

 "EXPENSE": [

 {

 "WHAT": "Beer",

 "AMOUNT": 18.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 12.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 19.00

 },

 {

 "WHAT": "Car",

 "AMOUNT": 20.00

 }

]

 },

 {

 "NUMBER": 4,

 "EXPENSE": [

 {

 "WHAT": "Beer",

 "AMOUNT": 19.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 16.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 17.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 17.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 14.00

 }

]

 },

 {

- 176 -

 "NUMBER": 5,

 "EXPENSE": [

 {

 "WHAT": "Beer",

 "AMOUNT": 14.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 12.00

 }

]

 }

]

 },

 {

 "WHO": "Beth",

 "WEEK": [

 {

 "NUMBER": 3,

 "EXPENSE": [

 {

 "WHAT": "Beer",

 "AMOUNT": 16.00

 }

]

 },

 {

 "NUMBER": 4,

 "EXPENSE": [

 {

 "WHAT": "Food",

 "AMOUNT": 17.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 15.00

 }

]

 },

 {

 "NUMBER": 5,

 "EXPENSE": [

 {

 "WHAT": "Food",

 "AMOUNT": 12.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 20.00

 }

]

 }

]

 },

 {

 "WHO": "Janet",

- 177 -

 "WEEK": [

 {

 "NUMBER": 3,

 "EXPENSE": [

 {

 "WHAT": "Car",

 "AMOUNT": 19.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 18.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 18.00

 }

]

 },

 {

 "NUMBER": 4,

 "EXPENSE": [

 {

 "WHAT": "Car",

 "AMOUNT": 17.00

 }

]

 },

 {

 "NUMBER": 5,

 "EXPENSE": [

 {

 "WHAT": "Beer",

 "AMOUNT": 14.00

 },

 {

 "WHAT": "Car",

 "AMOUNT": 12.00

 },

 {

 "WHAT": "Beer",

 "AMOUNT": 19.00

 },

 {

 "WHAT": "Food",

 "AMOUNT": 12.00

 }

]

 }

]

 }

]

- 178 -

Appendix B
This is an example showing how an OEM table can be implemented.

The header File my_global.h:

/***/
/* Definitions needed by the included files. */
/***/
#if !defined(MY_GLOBAL_H)
#define MY_GLOBAL_H
typedef unsigned int uint;
typedef unsigned int uint32;
typedef unsigned short ushort;
typedef unsigned long ulong;
typedef unsigned long DWORD;
typedef char *LPSTR;
typedef const char *LPCSTR;
typedef int BOOL;
#if defined(__WIN__)
typedef void *HANDLE;
#else
typedef int HANDLE;
#endif
typedef char *PSZ;
typedef const char *PCSZ;
typedef unsigned char BYTE;
typedef unsigned char uchar;
typedef long long longlong;
typedef unsigned long long ulonglong;
typedef char my_bool;
struct charset_info_st {};
typedef const charset_info_st CHARSET_INFO;
#define FALSE 0
#define TRUE 1
#define Item char
#define MY_MAX(a,b) ((a>b)?(a):(b))
#define MY_MIN(a,b) ((a<b)?(a):(b))
#endif // MY_GLOBAL_H

Note: This a fake my_global.h that just contains what is useful for the jmgoem.cpp source file.

The source File jmgoem.cpp:

/************* jmgoem C++ Program Source Code File (.CPP) **************/
/* PROGRAM NAME: jmgoem Version 1.0 */
/* (C) Copyright to the author Olivier BERTRAND 2017 */
/* This program is the Java MONGO OEM module definition. */
/***/

/***/
/* Definitions needed by the included files. */
/***/
#include "my_global.h"

/***/
/* Include application header files: */
/* global.h is header containing all global declarations. */
/* plgdbsem.h is header containing the DB application declarations. */
/* (x)table.h is header containing the TDBASE declarations. */
/* tabext.h is header containing the TDBEXT declarations. */
/* mongo.h is header containing the MONGO declarations. */

- 179 -

/***/
#include "global.h"
#include "plgdbsem.h"
#if defined(HAVE_JMGO)
#include "csort.h"
#include "javaconn.h"
#endif // HAVE_JMGO
#include "xtable.h"
#include "tabext.h"
#include "mongo.h"

/***/
/* These functions are exported from the MONGO library. */
/***/
extern "C" {
 PTABDEF __stdcall GetMONGO(PGLOBAL, void*);
 PQRYRES __stdcall ColMONGO(PGLOBAL, PTOS, void*, char*, char*, bool);
} // extern "C"

/***/
/* DB static variables. */
/***/
int TDB::Tnum;
int DTVAL::Shift;
#if defined(HAVE_JMGO)
int CSORT::Limit = 0;
double CSORT::Lg2 = log(2.0);
size_t CSORT::Cpn[1000] = {0}; /* Precalculated cmpnum values */
#if defined(HAVE_JAVACONN)
char *JvmPath = NULL;
char *ClassPath = NULL;
char *GetPluginDir(void)
{return "C:/mongo-java-driver/mongo-java-driver-3.4.2.jar;"
 "C:/MariaDB-10.1/MariaDB/storage/connect/";}
char *GetJavaWrapper(void) {return (char*)"wrappers/Mongo3Interface";}
#else // !HAVE_JAVACONN
HANDLE JAVAConn::LibJvm; // Handle to the jvm DLL
CRTJVM JAVAConn::CreateJavaVM;
GETJVM JAVAConn::GetCreatedJavaVMs;
#if defined(_DEBUG)
GETDEF JAVAConn::GetDefaultJavaVMInitArgs;
#endif // _DEBUG
#endif // !HAVE_JAVACONN
#endif // HAVE_JMGO

/***/
/* This function returns a Mongo definition class. */
/***/
PTABDEF __stdcall GetMONGO(PGLOBAL g, void *memp)
{
 return new(g, memp) MGODEF;
} // end of GetMONGO

#ifdef NOEXP
/***/
/* Functions to be defined if not exported by the CONNECT version. */
/***/
bool IsNum(PSZ s)
{
 for (char *p = s; *p; p++)
 if (*p == ']')
 break;

- 180 -

 else if (!isdigit(*p) || *p == '-')
 return false;

 return true;
} // end of IsNum

void *PlugSubAlloc(PGLOBAL g, void *memp, size_t size)
{
 PPOOLHEADER pph; /* Points on area header. */

 if (!memp)
 memp = g->Sarea;

 size = ((size + 7) / 8) * 8; /* Round up size to multiple of 8 */
 pph = (PPOOLHEADER)memp;

 if ((uint)size > pph->FreeBlk) { /* Not enough memory left in pool */
 PCSZ pname = "Work";

 sprintf(g->Message,
 "Not enough memory in %s area for request of %u (used=%d free=%d)",
 pname, (uint)size, pph->To_Free, pph->FreeBlk);
 throw 1234;
 } /* endif size OS32 code */

 // Do the suballocation the simplest way
 memp = MakePtr(memp, pph->To_Free); /* Points to suballocated block */
 pph->To_Free += (OFFSET)size; /* New offset of pool free block */
 pph->FreeBlk -= (uint)size; /* New size of pool free block */
 return (memp);
} /* end of PlugSubAlloc */
#endif

/***/
/* Return the columns definition to MariaDB. */
/***/
PQRYRES __stdcall ColMONGO(PGLOBAL g, PTOS tp, char *tab,
 char *db, bool info)
{
#ifdef NOMGOCOL
 // Cannot use discovery
 strcpy(g->Message, "No discovery, MGOColumns is not accessible");
 return NULL;
#else
 return MGOColumns(g, db, NULL, tp, info);
#endif
} // end of ColMONGO

The file mongo.def: (required only on Windows)

LIBRARY MONGO

EXPORTS

 GetMONGO @1

 ColMONGO @2

Compiling this OEM

To compile this OEM module, firstly make the two or three required files by a copy/past from the above

listings.

Even if this module is to be used with a binary distribution, you need some source files in order to

successfully compile it. At least the CONNECT header files that are included in jmgoem.cpp and the

- 181 -

ones they can include. This can be obtained by downloading the MariaDB source file tar.gz and

extracting from it the CONNECT sources files in a directory that will be added to the additional source

directories if it is not the directory containing the above files.

The module must be linked to the ha_connect.lib of the binary version it will used with. Recent

distributions add this lib in the plugin directory.

The resulting module, for instance mongo.so or mongo.dll, must be placed in the plugin directory of the

MariaDB server. Then, you will be able to use MONGO like tables simply replacing in the CREATE

TABLE statement the option TABLE_TYPE=MONGO by TABLE_TYPE=OEM SUBTYPE=MONGO

MODULE=’mongo.(so|dll)’. Actually, the module name, here supposedly ‘mongo’, can be anything you

like.

This will work with the last (not yet) distributed versions of MariaDB 10.0 and 10.1 because, even it is

not enabled, the MONGO type is included in them. This is also the case of MariaDB 10.2.9 but then, on

Windows, you will have to define NOEXP and NOMGOCOL because these functions are not exported

by this version.

To implement it for older versions that do not contain the MONGO type, you can do it by adding the

corresponding source files, namely javaconn.cpp, jmgfam.cpp, jmgoconn.cpp, mongo.cpp and

tabjmg.cpp that you should find in the CONNECT extracted source files if you downloaded a recent

version. As they include my_global.h, this is the reason why the included file was named this way. In

addition, your compiling should define HAVE_JMGO and HAVE_JAVACONN. Of course, this is

possible only if the ha_connect.lib is available.

- 182 -

Appendix C

Compiling Json UDFs in a Separate library

Although the JSON UDF’s can be nicely included in the CONNECT library module, there are cases

when you may need to have them in a separate library.

This is when CONNECT is compiled embedded, or if you want to test or use these UDF’s with other

MariaDB versions not including them.

To make it, you need to have access to the last MariaDB source code. Then, make a project containing

these files:

1. jsonudf.cpp

2. json.cpp

3. value.cpp

4. osutil.c

5. plugutil.cpp

6. maputil.cpp

7. jsonutil.cpp

jsonutil.cpp is not distributed with the source code, you will have to make it from the following:

#include "my_global.h"
#include "mysqld.h"
#include "plugin.h"
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>

#include "global.h"

extern "C" int GetTraceValue(void) { return 0; }
uint GetJsonGrpSize(void) { return 100; }

/***/
/* These replace missing function of the (not used) DTVAL class. */
/***/
typedef struct _datpar *PDTP;
PDTP MakeDateFormat(PGLOBAL, PSZ, bool, bool, int) { return NULL; }
int ExtractDate(char*, PDTP, int, int val[6]) { return 0; }

#ifdef __WIN__
my_bool CloseFileHandle(HANDLE h)
{
 return !CloseHandle(h);
} /* end of CloseFileHandle */

#else /* UNIX */
my_bool CloseFileHandle(HANDLE h)
{
 return (close(h)) ? TRUE : FALSE;
} /* end of CloseFileHandle */

int GetLastError()
{
 return errno;
} /* end of GetLastError */

- 183 -

#endif // UNIX

/***/
/* Program for sub-allocating one item in a storage area. */
/* Note: This function is equivalent to PlugSubAlloc except that in */
/* case of insufficient memory, it returns NULL instead of doing a */
/* long jump. The caller must test the return value for error. */
/***/
void *PlgDBSubAlloc(PGLOBAL g, void *memp, size_t size)
{
 PPOOLHEADER pph; // Points on area header.

 if (!memp) // Allocation is to be done in the Sarea
 memp = g->Sarea;

 size = ((size + 7) / 8) * 8; /* Round up size to multiple of 8 */
 pph = (PPOOLHEADER)memp;

 if ((uint)size > pph->FreeBlk) { /* Not enough memory left in pool */
 sprintf(g->Message,
 "Not enough memory in Work area for request of %d (used=%d free=%d)",
 (int)size, pph->To_Free, pph->FreeBlk);
 return NULL;
 } // endif size

 // Do the suballocation the simplest way
 memp = MakePtr(memp, pph->To_Free); // Points to sub_allocated block
 pph->To_Free += size; // New offset of pool free block
 pph->FreeBlk -= size; // New size of pool free block

 return (memp);
} // end of PlgDBSubAlloc

You can create the file by copy/paste from the above.

Set all the additional include directories to the MariaDB include directories used in plugin compiling

plus the reference of the storage/connect directories, and compile like any other UDF giving any name

to the made library module (I used jsonudf.dll on Windows)

Then you can create the functions using this name as the soname parameter.

There are some restrictions when using the UDF’s this way:

• The connect_json_grp_size variable cannot be accessed. The group size is set to 100.

• In case of error, warnings are replaced by messages sent to stderr.

• No trace.

- 184 -

- 185 -

Index

accept, 34, 35, 36, 133

catalog, 8, 11, 89, 142, 146, 147, 148, 149

Catalog Functions

FNC_COL Columns, 149

FNC_DRIVER Drivers, 149

FNC_DSN Data Sources, 149

FNC_TAB Tables, 149

Catalog tables, 11, 146

colist, 125

colname, 121, 123

Column Options

DATE_FORMAT, 9

FIELD_FORMAT, 9

FIELD_LENGTH (for dates), 9, 10

FLAG, 9, 10, 136

SPECIAL columns, 9, 152

compressed, 9, 21

Data Types

TYPE_BIGINT, 11, 12, 16, 17

TYPE_DATE, 11, 16, 17

TYPE_FLOAT, 11, 12, 16, 17

TYPE_INT, 11, 12, 16, 17

TYPE_SHORT, 11, 12, 16, 17

TYPE_STRING, 11, 16, 17

database, 5, 8, 18, 20, 39, 89, 91, 114, 133, 134,

135, 146, 167, 168

date_format, 13, 25, 32, 33, 37, 84, 152

encoding, 14, 24, 38, 51, 52

Excel files, 6, 10, 91, 92

FEDERATED, 10, 136

field_format, 26, 27, 30, 34, 35, 36, 37, 40, 41,

42, 46, 48, 50

FIELD_LENGTH, 13, 37

flag, 24, 25, 26, 29, 33, 51, 84, 85, 120, 121,

123, 133, 134, 140, 144, 146, 147, 148, 150,

152, 167

format, 5, 6, 9, 10, 11, 13, 14, 16, 21, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41,

42, 45, 46, 48, 50, 84, 85, 91, 120, 143, 145,

152, 167, 168, 169

HeadAttr, 51

Host name, 114, 120, 144

HTML, 9, 10, 49, 50, 51, 169

index, 8, 10, 42, 154, 167

indexes, 9, 120, 154, 167

indexing, 90, 92, 115, 154, 167

JSON, 5, 10, 20, 38, 52, 53, 54, 55, 56, 57, 58,

59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 81, 82, 83, 148, 172

Arrays, 53

Objects, 53

Values, 53

layout, 27, 30, 32, 84, 85

Linux, 7, 9, 21, 89

MERGE, 11, 136

multiple, 9, 20, 26, 32, 46, 48, 49, 92, 121, 122,

123, 133, 141, 152, 168

NULL value, 14, 36, 85, 121, 123, 133, 134,

148, 152

occurcol, 125, 126

offset, 10, 24, 25, 26, 29, 120, 152, 167

option_list, 9, 26, 29, 31, 38, 40, 41, 43, 44, 47,

48, 49, 50, 51, 85, 86, 114, 119, 120, 121,

123, 125, 133, 134, 135, 140, 141, 143, 145,

169

password, 114, 119, 120

port, 114

proxy, 119, 120, 121, 124, 134

rankcol, 125

seclen, 86

Special Columns

FILEID, 6, 152

ROWID, 6, 152

ROWNUM, 152

TABID, 134, 135, 152

subdir, 140

Table Options

BLOCK_SIZE Block of lines size, 9

CATFUNC Catalog function, 8

COMPRESS Compressed file, 9

DATA_CHARSET Data character set, 8, 11,

52

DBNAME Source database, 8

ENDING Line ending, 9

FILE_NAME File name, 8, 20

HEADER, 9

HUGE File larger than 2GB, 8

LRECL Record length, 9

MAPPED Using file mapping, 8, 167

MODULE External library or DLL, 8

MULTIPLE Multiple files table, 9, 20

OPTION_LIST List of options, 8, 9

QCHAR Quoting character, 8

QUOTED Quoted fields, 9

READONLY Protected table, 9

SEP_CHAR Separation character, 8

SPLIT Separate VEC column files, 9

SUBTYPE EOM table sub-type, 8

TABLE_TYPE connect type, 8

TABNAME Source table name, 8, 148

XFILE_NAME Index file name, 8

Table Types

BIN Binary files, 10, 14, 21, 26, 29, 30, 167,

168

CSV Fichiers CSV, 8, 9, 10, 21, 32, 33, 148,

149

DBF dBASE files, 10, 28, 29, 148, 149, 168

DIR Directory listing, 6, 11, 20, 137, 139,

140, 142

DOS Text files, 10, 11, 20, 21, 24, 29, 91, 154

- 186 -

FIX Fixed length text file, 10, 21, 24, 25, 26,

27, 29, 152, 167, 168

FMT Formatted files, 10, 21, 32, 34, 35, 37

INI Configuration files, 10, 14, 84, 85, 86

MAC addresses, 6, 11, 137, 143, 144

MYSQL TABLE ACCESSED VIA MYSQL API,

8, 10, 11, 14, 16, 113, 114, 115, 134, 135,

136, 148, 149, 153, 169

OCCUR Table with, 11, 119, 124

ODBC TABLE, 8, 9, 10, 11, 14, 16, 17, 89, 90,

91, 92, 100, 103, 136, 146, 147, 148, 149,

167, 169

OEM Externally implemented type, 8, 11, 20,

145, 175

PROXY Table, 10, 119

Table having a, 11, 121, 123

Table having several, 11, 119, 124

Table reading another table data, 10, 119

TBL List of CONNECT tables, 8, 10, 11,

119, 121, 124, 133, 135, 136, 152, 169

VEC Vector files, 9, 10, 12, 14, 20, 21, 31,

167, 168

WMI Windows Management

Instrumentation, 6, 11, 137, 141, 142, 143,

148, 149, 150, 169

XCOL Table with, 11, 121, 123

XML OR HTML FILES, 8, 10, 14, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,

52, 152, 168, 169

UNIX, 20, 21, 25

User name, 18, 114, 119, 120, 134, 135, 136,

170

Windows, 9, 11, 21, 25, 38, 46, 84, 85, 137, 140,

141, 143

XML table options

Attribute, 51

Colnode, 50, 51

Encoding, 51, 52

Expand, 47, 48, 49

Limit, 47, 48, 49

Mulnode, 47, 48, 49

Rownode, 51

Xpath, 41, 50

